
A FRAMEWORK FOR ASSISTING LEARNERS BY INCORPORATING

KNOWLEDGE TO AID IN PREDICTING NERVE GUIDANCE CONDUIT

PERFORMANCE

by

William Frederick Koch III

A THESIS

Submitted to the Faculty of the Stevens Institute of Technology
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE - COMPUTER ENGINEERING

William Frederick Koch III, Candidate

ADVISORY COMMITTEE

Yan Meng, Advisor Date

Xiaojun Yu, Reader Date

STEVENS INSTITUTE OF TECHNOLOGY
Castle Point on Hudson

Hoboken, NJ 07030
2013

c©2013, William Frederick Koch III. All rights reserved.

iii

A FRAMEWORK FOR ASSISTING LEARNERS BY INCORPORATING

KNOWLEDGE TO AID IN PREDICTING NERVE GUIDANCE CONDUIT

PERFORMANCE

ABSTRACT

Collecting an adequate number of samples to make accurate predictions can be chal-

lenging in many domains. Events may occur infrequently or sampling techniques may

be costly to perform to collected the desired number of samples. The resulting collec-

tion may be sparse, and/or incomplete which can cause inductive machine learning

algorithms to perform unpredictably. Typically there exists additional knowledge

from domain experts which can be used to produce more accurate predictions. This

thesis presents a method for fusing prior or post domain knowledge into information

provided by a machine learning system while acting independently of the learners

training algorithm. The influential strength of the additional knowledge is dependent

on the machine learners confidence of the prediction. The presented method is ap-

plied to a real-world application to predict the performance of various nerve guidance

conduits (NGCs) where data is limited because a single experiment can take over a

year to complete. The ability to predict NGC performance will provide for a better

understanding and insight for theorizing successful strategies for NGC development.

A benchmark demonstrates how the presented model provides substantial increases in

accuracy in predicting the performance of a NGC over a single neural network, boot-

strap aggregated neural network, and previous prediction attempts by the SWarm

Intelligence based Reinforcement Learning (SWIRL) system.

Author: William Frederick Koch III

Advisor: Yan Meng

Date: July 1, 2013

iv

Department: Computer Engineering

Degree: Master of Science - Computer Engineering

v

Dedication

This thesis is dedicated to my Mom and Dad who have fully supported me through

my life and academic career. I am very grateful for all of the sacrifices you have

made for me and the help you have given to me over the years. I would also like to

dedicate this thesis to my brothers Coleman, Spencer and Carter. I am so proud of

you guys, you are all extremely gifted and have so much to offer this world.

I love you all very much.

vi

Acknowledgments

I would like to acknowledge my advisor Professor Dr. Yan Meng who since

the beginning of my graduate studies has had nothing but support and confidence

in my studies. Everything I have learned about academic research and writing is

attributed to her. As most of my research was focused in bioinformatics I express

my gratitude to the biological perspective Professor Dr. Xiaojun Yu has given me.

Additionally I would like to thank Wei Chang for his efforts in compiling data used in

this thesis. Finally I would like to thank my colleague Munish Shah who has taught

me everything I know about nerve guidance conduits, the focus of this research. The

majority of data collection, preparation and interpretation is accredit to him. This

work would not be possible without Munish’s dedication and passion on the subject.

It was a pleasure working with everyone on this research.

vii

Table of Contents

Abstract iii

Dedication v

Acknowledgments vi

List of Tables ix

List of Figures x

1 Introduction 1

2 Literature Review 4

2.1 Domain Knowledge Integration 4

2.1.1 Virtual Examples 4

2.1.2 Hints 6

3 Model 10

3.1 Overview 14

3.2 Prediction Interval Construction Methods 15

3.2.1 Delta Method 16

3.2.2 Bayesian Framework 18

3.2.3 Mean-Variance Estimation (MVE) 20

3.2.4 Bootstrapping 21

3.3 Architecture 23

3.4 Experimental Implementation 28

viii

3.4.1 Learner 28

3.4.2 Knowledge 29

3.4.3 Confidence 31

3.4.4 Supervisor 32

4 Experiments and Results 33

4.1 Defining Nerve Guidance Conduit Performance 33

4.2 Data Preparation 35

4.3 Experimental Setup 46

4.4 Results 52

4.4.1 Bagged Neural Network Prediction Intervals 52

4.4.2 Optimal Ensemble Size 54

4.4.3 Execution Runtime 56

4.4.4 ALINK Candidate Cases 57

4.4.5 Benchmarking 59

5 Conclusion 62

6 Future Work 65

Appendices 70

A Acronyms 70

B Third-party Libraries 71

References 74

ix

List of Tables

4.1 The input parameters categorized based on their application to the

development and enhancement of NGCs 36

4.2 The possible combinations for categorical fields in which parameters are

boolean types. The identification of combinations allows for parameter

condensing and to be represented in a binary encoding scheme. 38

4.3 Summary of Benchmark Results 61

x

List of Figures

3.1 Change in neuron sensitivity of a hyperbolic tangent function. An

increase in sensitivity causes for higher output while decrease in sensi-

tivity results in lower output. 12

3.2 Original method for attempting to incorporate knowledge into a learner

by level of confidence. This method changes the firing sensitivity of the

neurons to influence its ability to make a prediction. 13

3.3 Overview of Assisting Learners by INcorporating Knowledge (ALINK)

components. Current input values ~x are fed to the learner and knowl-

edge base. Both produce estimates of the target output. How the

estimates are fused together to form the output is determined by the

prediction confidence. 24

3.4 Flow chart describing how ALINK makes a prediction. In order for

ALINK to utilize additional knowledge in its prediction it must first

make sure that the input values in ~x have knowledge associated with

them. If no knowledge exists then the output is simply the output ŷ

of the learner. 27

3.5 Illustration of an ensemble of neural networks. The input is fed to each

network in the ensemble. The output ŷ is the average of all network

outputs in the ensemble. 29

3.6 Overview of fuzzy system architechure. 30

4.1 Membership function for input parameter pore diameter. Data ex-

tracted from [12, 13, 57, 67]. 40

xi

4.2 Membership function for input parameter laminin concentration. Data

extracted from [21, 49]. 41

4.3 Membership function for input parameter laminin application. Data

extracted from [21, 49]. 41

4.4 Membership function for input parameter α1-GP. Data extracted from

[4]. 42

4.5 Membership function for input parameter bone marrow stromal cells.

Data extracted from [14]. 42

4.6 Membership function for input parameter c-ions. Data extracted from

[36]. 43

4.7 Membership function for the input parameter b-FGF. Data extracted

from [36]. 43

4.8 Membership function for input parameter lumen channel count. Data

extracted from [13, 39, 40, 57, 67, 71, 75, 77, 79] 44

4.9 Membership function for input parameter NGF delivery. Data ex-

tracted from [21, 49, 73] 44

4.10 Membership function for input parameter NGF. Data extracted from

[21, 49] 45

4.11 Membership function for input parameter Schwann cells. Data ex-

tracted from [5]. 45

4.12 Membership function for the output ∆L. As mentioned in Section 4.1

the unbound nature of ∆L is a disadvantage of using this representation

therfore membership functions are only created based on experimen-

tal evidence. The collected records were clustered to determine the

number of terms needed. 46

xii

4.13 Neural network implementation used for predicting NGC performance.

Input layer consists of 40 units each constructed with linear transfer

functions. Hidden and output nodes are constructed with hyperbolic

tangent transfer functions. Bias units, those units labelled 1, are used

for hidden and output layers. Network outputs are ∆L and time t

which ∆L can be expected. 49

4.14 Color map displaying network topology performances when trained

with backpropagation. The color bar indicates the average mean squared

error (MSE), µMSE, of 50 trials conducted for each topology. 50 in-

stances of the data set are randomly partitioned at the beginning of

the experiment so each topology is trained and tested on each of the

50 instances to ensure results reflect topology performance. Darker

represents lower error. The lowest error is acheived with 20 nodes in

the first hidden layer and one node in the second hidden layer. 50

4.15 Color map displaying network topology performances when trained

with particle swarm optimization (PSO). The color bar indicates the

average MSE, µMSE, of the 50 trials conducted for each topology. 50

instances of the data set are randomly partitioned at the beginning of

the experiment so each topology is trained and tested on each of the

50 instances to ensure results reflect topology performance. Darker

represents lower error. The lowest error is acheived with 5 nodes in the

first hidden layer and zero nodes in the second hidden layer (i.e., the

second layer is not used). 51

xiii

4.16 An synthetic example of defining the 95% prediction interval using the

bootstrap method. A bootstrap aggregated (bagged) neural network

(NN) is trained on a random U-quadratic sampling between the interval

[-1,1]. We can see that areas that are more dense during training

have narrower prediction intervals (PIs) indicating the model is more

confident to predict these values. Sparse samples centered around 0

have wider PIs indicating the model is less confident in its prediction. 54

4.17 Results determining optimal number of networks to use in ensemble

for bagged NN and ALINK when trained with backpropagation. Top

subplot is mean MSE of 20 trials, while the variance between trials is

shown in bottom plot. 55

4.18 Results determining optimal number of networks to use in ensemble

for bagged NN and ALINK when trained with PSO. Top subplot is

mean MSE of 20 trials, while the variance between trials is shown in

bottom plot. 56

4.19 Comparison of execution times to train ALINK with backpropagation

and PSO when implemented with a bagged NN. The time in minutes

is an average over 20 runs. 57

xiv

4.20 Details of ALINK deriving the output for candidate cases. The plot

shows the output of the each components in the framework. The cir-

cle outline represent the output from the fuzzy system (FS), diamonds

represent the output from the bagged NN while the error bars represent

the 95% PI of the bagged NN prediction. The bagged NN was con-

structed using the optimal size ensemble B = 100 trained with PSO.

Finally the output from ALINK is represented by the solid circle. To

give perspective the target ∆L output is represented by a solid square.

For cases that have wider intervals the learner output gravitates more

toward the fuzzy system. This concept illustrates the gravitational

pull toward the knowledge base to provide for more accurate predic-

tion when confidence is low. 58

4.21 Result of models benchmarked. Top subplot is mean MSE µMSE of 20

trials performed. The variance between trials σ2
MSE is shown in bottom

plot. 60

6.1 Possible examples of alternative functions for defining the gravitational

pull. 67

1

Chapter 1

Introduction

Assembling a balanced training set of sufficient size is critical for a learner to make

accurate predictions. As the number of observations increase a better understanding

of the true underlying target distribution is uncovered and prediction accuracy can

increase.

Increasing the sample size, however, is only beneficial if there is a low cor-

relation between samples. Furthermore there are many cases in which the number

of samples available are limited and the required sample size can not be reached

for the desired accuracy. Incomplete and unbalanced training sets can lead to high

uncertainty in the predictors output [26]. Typically there exists experts in the tar-

get domain which are knowledgeable of the observed system. Incorporating their

domain knowledge can help fill the gaps where data is insufficient and improve accu-

racy in prediction. This is of particular importance in modelling systems where data

collected is obtained from long-term experiments. Long-term experiments occur in

many domains including but not limited to biology, agriculture, and astronomy. A

20 year experiment to study genomic evolution through E. coli was conducted by [7].

Long-term agroecosystem experiments (LTAE) are conducted to predict global agri-

cultural sustainability. LTAEs can occur for more 50 years and are referred to as

classical [65]. Quasi-cycles from cosmic X-rays, which can occur for many years, are

difficult to observe due to equipment limitations [63]. The limitation in data makes

predicting these cycles challenging.

Additionally there are situations in which new knowledge is discovered by

system experts after models have been created and distributed to their target envi-

2

ronment. This leads us to the following scenario; suppose we encounter a task that

is unfamiliar to us. Due to our limited knowledge our confidence is low in regards to

performing it successfully. However if we are supervised by a trusted source available

to assist us with additional knowledge on how to perform the task, we are given the

ability to adjust our initial approach to form a more accurate result.

This scenario has led to the creation of a framework for Assisting Learners

by INcorporating Knowledge (ALINK) [46]. ALINK provides flexibility and robust-

ness allowing for incorporation of prior or post domain knowledge, in a non-invasive

fashion, that is the fusion of knowledge from the expert system and learner occurs

outside of the training process which allows it to be used with any inductive learning

algorithm. ALINK utilizes the confidence of the learner to determine the degree of

influence the additional knowledge will have on the prediction. When the learners

confidence is low the learner gravitates toward the information provided by the avail-

able knowledge. If the learners confidence is high, it will be less interested in the

additional knowledge and trust its own ability to produce an accurate prediction.

ALINK serves as a guideline for fusing domain knowledge with that of a learner.

Many implementations may be used. Knowledge may be represented as strict or fuzzy

truth and may be in the form of constraints, bounds or approximations for all or se-

lective input parameters. All available knowledge is used to nudge the prediction

output in the correct direction when the learner is uncertain. The prediction may

come from any learned system such as a neural network (NN), Support Vector Ma-

chine (SVM), Bayesian network, etc. Furthermore any method for determining the

prediction confidence may used such as the delta method, Bayesian framework, mean-

variance estimation (MVE) or by bootstrapping which will all be discussed in Section

3.2.

The remainder of this thesis is outlined as follows. In Chapter 2 a literature

3

review is conducted surveying methods for incorporating domain knowledge into in-

ductive machine learning algorithms. Chapter 3 describes in detail the frameworks

approach to incorporating domain knowledge. An overview of how the confidence of a

learner is determined is also discussed in this chapter summarizing popular methods

with an emphasis on neural network implementation. Additionally the implementa-

tion of ALINK used in experimentation is discussed in detail here. A demonstration

of the accuracy of the ALINK in a real-world application predicting the performance

of nerve guidance conduits in presented in Chapter 4. Chapter 5 summarizes experi-

mental results and in Chapter 6 future work is discussed.

4

Chapter 2

Literature Review

2.1 Domain Knowledge Integration

Integrating prior domain knowledge can increase prediction accuracy when observa-

tions used for training are limited. Domain experts have learned about the target

system and hold vital information that can be used to aid in the prediction of the

system. The method in which data is extracted from the experts in the form of knowl-

edge and integrated into a machine learning algorithm is the challenge. Additionally

knowledge about the system can be used to generate synthetic observations to aid

in training. Various methods for incorporating prior domain knowledge have been

surveyed by [55] and [78]. Two popular methods are through virtual examples and

hints.

2.1.1 Virtual Examples

Prior domain knowledge can be used to generate new training examples to be used in

the learning process. These new examples are known as virtual examples [55]. This

is particularly useful when the training data is of insufficient size. Virtual examples

can be generated by synthesizing entirely new examples [61] or by transforming the

original data [54, 55].

Synthetic Examples

Synthetic training examples are training examples fabricated from domain knowledge.

Since they are unique they have the ability to have low correlation to the observed

5

data they can aid in filling in gaps in training data.

The ALVINN (Autonomous Land Vehicle In a Neural Network) project [61,

62] utilizes a NN to process video data to pilot a modified Chevy van. Previously,

heavy preprocessing has prevented successful real time training using vision sensory

data [48]. To overcome this limitation ALVINNs original training scheme used back-

propagation (BP) taught on synthetic road scenes as input with its corresponding

driving controls as output. Although ALVINN was successful at navigating a short

distance at low speeds under various weather conditions, using synthetic examples

had its shortcomings. Generating the synthetic examples was very computationally

expensive and when tested using real sensory data caused poor performance.

Recognition of a material can allow for a robotic system to interact with the

environment more intelligently. [50] has created virtual materials to form a new virtual

database MPI-VIPS (Virtual texture under varying Illumination, Pose and Scales).

Using shaders commercially available and from the graphics community they were able

to use Autodesk 3ds Max to rebuild scenes from the original materials database. Using

automated scripting scene changes could be done automatically rather than manually

in a real world setting. Some virtual materials with complex light interactions did

however differ from there real world counterparts.

Invariance Transformation

Invariance transformation [78] involves a piece of information P to undergo a trans-

formation s where the target function result is the same as the original, that is,

f(s(P)) = f(P) (2.1)

6

For example say we are training a network to recognize an image of a cat. If only

trained on images of cat faces the network will only be able to recognize a cat by its

face. If we use a rotation transformation and capture images of a cat from different

angles it will allow the network to better generalize what a cat looks like. Possible

geometrical transformations of image data include shearing, scaling, rotation and

distortion [54, 70]. Virtual examples by transforming the original data set are useful

in pattern recognition problems such as vision and speech.

Invariance transformations however are limited to data transformation which

satisfies the initially defined condition (2.1), additionally a challenge involved in this

approach is determining appropriate methods for creating novel transformations to

overcome the inherit high correlation to the original information. [78] has proposed

methods using a linear class technique to create novel 2-D virtual views of 3-D objects

without knowing what the true 3-D object looks like.

Virtual examples have the main advantage of being able to be applied to any

inductive learning system and to the learner the virtual examples are identical to

the observed examples. Therefore virtual examples are not limited to any particular

training algorithm. Once the virtual examples are created they are viewed no differ-

ently than any other training example from the original data set. This is particularly

useful when using 3rd party software such as Weka [28], Encog Machine Learning

Framework, and MATLAB’s Neural Network Toolbox.

2.1.2 Hints

Hints are defined as additional pieces of information about the target function to aid

in the learning process [1]. They provide complexity and informational value [2]. The

complexity value allows for the number of steps to estimate the target function to be

reduced while the information value provides means to reduce the search space.

7

The target function f is estimated by some hypothesis g. They error describing

the agreement between the target and approximation is defined as E(g, f). Below are

a list of popular hints as discussed in [1] and [78]:

Invariance Hint

The invariance hint asserts that f(x) = f(x′) for a pair x and x′. The input x under

goes some sort of transformation to produce x′. Although the input under goes this

transformation the targets are still identical. For example in image recognition, if an

original image x is skewed or scaled to produce x′ it is still the same image. The

error produced by a single example is defined by (2.2). The error is derived from the

hypothesis of the original input and the transformed input. The target function does

not need to be known as the error is represented as an assertion between the two

outputs. Invariance hints however leave it to the user to determine how the input

can be transformed and to what degree. As the transformed input x′ is derived from

the original input it can lead to high correlation between the two [78]. Others such

as [55] have focused solely on the creation of this transformation.

em = [g(x)− g(x′)]2 (2.2)

Monotonicity Hint

The monotonicity hint asserts that f(x) ≥ f(x′) for a pair x and x′, that is for a

particular x′ it is increasing fulfilling the x ≤ x′ property. The error associated with

this hint is defined by (2.3).

em =

 [g(x)− g(x′)]2 if g(x) > g(x’)

0 if g(x) ≤ g(x’)
(2.3)

8

It was shown in [66] that monotonicity hints can be applied to credit card

application task and in medical diagnosis.

Example Hint

Typical training examples can also be represented as example hints. Examples hints

assert that given [x1, f(x1)], ..., [xN , f(xN)] the function f is the correct value for the

inputs x1, x2, ..., xN . The error e0 (2.4) is denoted by the subscript 0 to represent

an example hint. Example hints are used to transparently treat observed training

examples the same as other hints.

e0 = [g(xn)− f(xn)]2 (2.4)

Approximation Hint

Approximation hints assert that for x ∈ X then f(x) ∈ [ax, bx]. For input x, the

value of f is only approximately known. The error is defined by (2.5).

em =


[g(x)− ax]2 if g(x) < ax

[g(x)− bx]2 if g(x) < bx

0 if g(x) ∈ [ax, bx]

(2.5)

Catalytic Hint

Up until this point the previous discussed hints have been incorporated into the

learning processes by representing the hints as virtual examples. Catalytic hints

proposed by [68] are incorporated quite differently. During training an additional

output node is added to the network which is learned simultaneously to the target

output node. Once the network is trained, the catalyst node is removed from the

9

network. Typically the output of this catalyst node is used to emphasize something

about the target output. Designing this hint to produce optimal results can be

challenging. It has been shown by [41] that fuzzy knowledge can be used as a catalyst

function.

In order for hints to be used in the learning process they must be represented

in a way the learner can interpret. Hints can be represented as virtual examples or

duplicate examples. The virtual examples previously discussed are essential the same

to duplicate example in [2] however hints represented as virtual examples are quite

different.

The total hint error E (2.6) is a combination of the errors of all the M hints.

E = Ê(E0, E1, E2, ..., EM) (2.6)

For hints used to train a NN, backpropagation can be used in which the gradient

is defined by (2.7). Here w is the adjusted weight.

∂Ê

∂w
=

M∑
m=0

∂Ê

∂Em

∂Em
∂w

(2.7)

Virtual examples created from hints have two advantages over duplicate ex-

amples [1]. First, since training on virtual examples is independent of training on the

observed data set, more control is available on the level of effect the hints will have

in the learning process. Secondly since a target output is not required for many hints

it allows for an infinite number of virtual examples to be created.

10

Chapter 3

Model

Motivation to create such model was a result of working with data reporting perfor-

mance of various nerve guidance conduit (NGC) construction methods. This research

which will be discussed in greater detail in Chapter 4. The difficultly in deriving a

proper model to predict NGC performance was due to a limited data set and its high

dimensionality. When a feed-forward neural network (FFNN) was trained on this

data set it was quite inaccurate. There was however knowledge rules to accompany

the data. It was known that this additional information needed to be integrated in

order to provide for a more accurate prediction.

The primary disadvantage to using hints is the method in which they are

integrated into the learning processes. As discussed in Section 2.1.2 the popular

method for incorporation was modifying decent algorithms. In order for other training

algorithms to be used they must also be modified to take into account the error of the

hints. As the use of hints is not standard practise it prohibits the use of out of the

box training algorithms in 3rd party machine learning toolboxes. Duplicate examples,

(or virtual examples referred to by [55]), provide for transparency between synthetic

generated examples and those collected examples by observation allowing for the use

in any 3rd party machine learning toolbox. However if the generated examples have

a high correlation to the original data set this is going to do little to help the models

generalization.

Reviewing the original FFNN output predictions of NGC performance, the

network had higher prediction accuracy in areas where data was balanced, however

where gaps in the data occurred accuracy dropped. This lead to the question; how

11

could the learners confidence be determined so when needed additional knowledge

could be used to help the learners ability to make a prediction?

In the beginning stages of predicting NGC performance the knowledge rules

that existed were relatively phrased to a control. They could tell us if based on a

selection of parameters if it would perform better or worse than a control however

they could not give us absolute values of the actual performance. For this reason a

method was created to try and influence a learner in the same relative manner.

The original idea was to create dynamic neurons in a NN. The neurons firing

sensitivity would be a function of confidence and additional knowledge. The change

in sensitivity was an attempt to influence the model toward the correct prediction

relative to its normal firing sensitivity. An increase in sensitivity provided for a higher

output, while decrease in sensitivity provided a lower output value. An increase and

decrease in sensitivity can be seen with a hyperbolic tangent function φ in Figure 3.1.

12

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

φ
(x

)

Normal

Decrease in sensitivity

Increase in sensitivity

Figure 3.1: Change in neuron sensitivity of a hyperbolic tangent function. An increase
in sensitivity causes for higher output while decrease in sensitivity results in lower
output.

The model displayed in Figure 3.2 is comprised of a fuzzy system (FS) to

represent the knowledge, confidence and a NN. The output of the fuzzy system I is a

measure of influence the knowledge will have to adjust the sensitivity of the neurons.

The confidence C is determined by calculating the distribution of input occurrence

during training and evaluating the current input parameters during testing against

this distribution. A degree of influence I◦, a function of the confidence and knowledge,

provided the measure to change the neuron sensitivity.

13

Figure 3.2: Original method for attempting to incorporate knowledge into a learner
by level of confidence. This method changes the firing sensitivity of the neurons to
influence its ability to make a prediction.

Although the idea of dynamically adjusting neuron sensitivity may serve bene-

ficial in other implementation it resulted in in little to no improvement in this model.

Furthermore the inability to adjust each neuron independently did not allow for the

flexibility needed. The output difference in the neural network and fuzzy system

added additional complexity to integration. Additionally the construction method

14

for determining confidence was inaccurate. The confidence was more of a indication

of data distribution rather than confidence of the learner which was required. A

method for influencing a learners decision with additional knowledge based on the

learners confidence however seemed promising thus further investigation lead to the

birth of a framework for Assisting Learners by INcorporating Knowledge (ALINK).

3.1 Overview

The approach used by the ALINK framework is to fuse the information provided from

the additional knowledge and the learner to provide for the most accurate prediction.

It is assumed that there is a direct correlation between the learners confidence and

the impact of the additional knowledge should have on the output. We want to

provide assistance to the learner when its confidence is low in the form of additional

knowledge we know about the target function. The domain knowledge attempts

to fill the void in cases where the learner is not confident. The learner output is

adjusted depending on how confident it is on estimating the output for the current

input values. When the learners confidence is low we want the learners output to

gravitate toward the information provided by the domain knowledge. If the confidence

is high, we the learner output is trusted more and rely on information provided from

domain knowledge less. We do not want to trust the knowledge fully as the knowledge

provided may be incomplete or fuzzy.

Furthermore the knowledge integration methods discussed in Section 2.1 are

all for incorporating prior domain knowledge. ALINK allows for post knowledge

incorporation. In events that additional knowledge is discovered after a learner has

been trained, additional knowledge may be added without the learner having to be

retrained. Depending on network complexity, training algorithm, size of data set

15

and computer hardware, a learners training time will vary. For machine learning

algorithms deployed on limited hardware it may be unrealistic for them to be able to

perform their own training. However if the new data is in the form of knowledge, the

knowledge only need to be replaced in ALINK adding no additional complexity.

In order for ALINK to correctly fuse the information of the provided knowl-

edge and prediction of the learner, a method for measuring the learners prediction

confidence must be used. ALINK uses prediction intervals to provide this measure.

Many different methods for computing prediction intervals exist, the appropriate one

should be chosen for the application.

3.2 Prediction Interval Construction Methods

The prediction interval (PI) identifies the likelihood of an observation falling within

a particular range with respect to a predetermined (1−α)% confidence interval. The

PI serves as a measure of accuracy, indicating how well the prediction can be trusted.

Wide PIs express a higher level of uncertainty thus implying the output is less trust

worthy, while narrow PIs suggest there is a smaller range the observation will fall and

the prediction is more trust worthy.

Machine learning algorithms may react unpredictably when there is uncertainty

in the input. This uncertainty may be a result of the training data being sparse or

incomplete. Providing an indication of the level of accuracy of the prediction is

particularly important in black box models such as neural networks.

There are two components to consider when determining the confidence of a

models estimation, the confidence interval and prediction interval [64]. Targets of a

system are typically modelled by (3.1),

ti = yi + εi (3.1)

16

where ti is the measured target for the ith sample, yi is the true output and εi is the

noise introduced during measurement. As we typically do not know the true function,

we attempt to estimate the function output with ŷi. Introducing the estimate to (3.1)

results in the models confidence (3.2).

ti − ŷi = [yi − ŷi] + εi (3.2)

The left hand side defines how far the estimate is from the target which is known

as the PI. The difference between the true function and estimated function yi − ŷi is

defined as the confidence interval.

The PI is the uncertainty in the estimation. It is based primarily on the model

variance. The model variance (3.3) is found by the variance in model parameters σ2
ŷi

and the variance in noise σ2
εi

.

σ2 = σ2
ŷi

+ σ2
εi

(3.3)

Many techniques have been developed for constructing PIs. Some of the popular

methods including the delta method, Bayesian framework, mean-variance estimation

(MVE), and bootstrapping.

3.2.1 Delta Method

The delta method is a common method to find the variance of a function of a random

variable, specifically for complex non-linear functions. The method seeks to find a

simpler version of the underlying function by computing a linear approximation. The

variance is then found from the simpler linear functions. The linear approximation is

usually found by Taylor series expansion about the mean [56]. The PI can be found

by treating the model parameters of a function approximation as random variables.

It has been show by [19, 23, 35] that the delta method can be applied to form

17

PIs for for neural networks. Each neural network is treated as a nonlinear regression

model. Finding the linear function involves computing the partial derivatives of the

NN model with respect to the model parameters in the form of a Jacobian matrix.

The variance in model parameters is defined as

σ2
ŷ = σ2

ε g
T (F TF)−1g (3.4)

where gT is neural network output gradient, F is the Jacobian matrix (3.5) and σ2
ε is

the variance in noise.

Fi,j =
∂f(xn, ŵ)

∂ŵp
(3.5)

Each element in the Jacobian matrix is a partial derivative of the model func-

tion f(xn, ŵ) with respect to the weight ŵp. If we replace σ2
ŷi

in (3.3) with (3.4) we

derive the total variance for the delta method by,

σ2
0 = σ2

ε (1 + gT0 (F TF)−1g0) (3.6)

From (3.6) the (1− α)% confidence is defined as,

ŷ ± t1−
α
2

n−p sε

√
1 + gT0 (F TF)−1g0 (3.7)

where t
1−α

2
n−p is the cumulative t-distribution with n − p degrees of freedom and sε is

the unbiased estimate of σ2
ε . During construction, deriving the Jacobian matrix can

be computationally expensive and should be preformed offline [45].

18

3.2.2 Bayesian Framework

In Bayesian statistics, conclusions are draw from not only the sampled data but also

from prior events. A PI is derived from the posterior distribution. Initially we have a

prior probability of a random variable p(θ). The likelihood of observation X occurring

is p(X|θ). The posterior probability is then defined by (3.8).

P (θ|X) =
P (θ)P (X|θ)

P (X)
(3.8)

Once the expected value and variance are computed from the distribution the pre-

diction interval can be derived. [23, 45] has shown how the Bayesian framework can

be applied to producing PIs for a neural network.

Using Bayesian training, weights w in a neural network M can be updated

based on the current training data D according to,

P (w|D, ρ, β,M) =
P (D|w, β,M)P (w|ρ,M)

P (D|ρ, β,M)
(3.9)

where ρ and β are hyperparameters of the cost function, that is they are

parameters of the prior distribution. The probability of a particular data example

occurring given a set of particular weights is represented by P (D|w, β,M), assuming

errors occurring are normally distributed is defined as,

P (D|w, β,M) =
1

ZD(β)
e−βED (3.10)

Here ZD(β) =
(
π
β

)n
2

where n is the number of training examples and ED is sum

of squared errors (SSE). The distribution of the weights given the neural network is

defined by P (w|ρ,M), in which it is also assumed errors normally distributed,

19

P (w|ρ,M) =
1

Zw(ρ)
e−ρEw (3.11)

Here Zw(ρ) =
(
π
ρ

) p
2

where p is the number of NN parameters and the sum of squares

of the NN weights is Ew. The term P (D|ρ, β,M) in the denominator is used for

normalization to ensure a probability of one. With the assumption of normally dis-

tributed errors (3.10) and (3.11) are substituted into (3.9),

P (w|D, ρ, β,M) =
1

ZF (β, ρ)
e−(ρEw+βED) (3.12)

HMP = ρ∇2Ew + β∇2ED (3.13)

Substituting the noise in the training examples σ2
D for σ2

εi
in (3.3) and the

variance in neural network parameters σ2
wMP for σ2

ŷi
the total variance in the model

is defined as,

σ2
i = σ2

D + σ2
wMP (3.14)

The variance is further defined to,

σ2
i =

1

β
+∇T

wMP ŷi
(
HMP

)−1∇wMP ŷi (3.15)

where ∇T
wMP is the output gradient per the most probable weights wMP and

HMP is the Hessian matrix of the training cost function. Based on the total variance

the (1− α)% PI is then defined as,

ŷi ± z1−
α
2

(
1

β
+∇T

wMP ŷi
(
HMP

)−1∇wMP ŷi

) 1
2

(3.16)

20

where z1−
α
2 is the quantile function of a normal distribution. Like the delta method

the Bayesian method is computationally expensive during construction because of the

Hessian matrix.

3.2.3 Mean-Variance Estimation (MVE)

Mean-Variance Estimation (MVE), proposed by [53], assumes that errors are normally

distributed about the true ideal mean, therefore if the mean and variance is identified

the PI can be constructed. Based on the fact that the output is a function of the input,

the error must also be a function of the input. A second learning function is used

to estimate the variance by being taught on the noise observed in the data set. The

two learners operate in parallel, both fed the same input data, one learner producing

the estimated output, and the second learner providing the estimated variance in the

output.

[53] used neural networks as the learner to derive the PI. Unlike the delta

and Bayesian methods, MVE PI are dynamic because of the use of the second neural

network NNσ computing the variance. In order to train NNσ there is a second train-

ing data set. This data set is comprised of the same input values used to train NNy

however the variance with respect to the training data outputs must be calculated

for the NNσ data set target output. During training NNσ is then minimized by the

following cost function,

C =
1

2

n∑
i=1

[
ln(σ̂2

i) +
(ti − ŷi)2

σ̂2
i

]
(3.17)

With both NNy and NNσ trained the (1− α)% PI can then be calculated by,

ŷ(x,wy)± z1−α
2

√
σ̂2(x,wσ) (3.18)

21

where ŷ(x,wy) is the predicted output from neural network NNy, σ̂
2(x,wσ) is the

output NNσ representing the variance and z1−α
2

is the standard normal distribution

value. The notation wy and wσ represent the weights for NNy and NNσ respectively.

The absence of derivative calculations provide for a simpler model than the

delta and Bayesian methods however its generalization is poor as it assumes that NNy

will compute the true mean which is problematical in real-world applications [45].

3.2.4 Bootstrapping

Bootstrapping [24] is a re-sampling technique based on the idea that the true prob-

ability distribution of a population can be modelled by re-sampling an empirical

distribution obtained from the original observed data set.

There are two bootstrap sampling approaches for regression, sampling by pairs

or residuals [69]. If the observed training data set is of size n, the bootstrap pairs

approach follows that a collection of n examples,

{(~x1, ~y1), (~x2, ~y2), ..., (~xn, ~yn)}

is drawn with replacement from the empirical distribution. This forms the bootstrap

sample {
(~x∗b1 , ~y

∗b
1), (~x∗b2 , ~y

∗b
2), ..., (~x∗bn , ~y

∗b
n)
}

denoted by an asterisk (∗) for the bth sample. The residual approach samples the

model residuals ri = yi − ŷi as opposed to the training observations used in the

bootstrap pairs approach. Each sampled residual is added to the predictor ŷ to form

the bootstrap sample

{
(~x1, ŷ1 + r∗b1), (~x2, ŷ2 + r∗b2), ..., (~xn, ŷn + r∗bn)

}

22

where ŷi = y(~xn; θ̂) and θ̂ are the estimated model parameters. The primary differ-

ence between the two methods as described by [8] is that the pairs approach provides

an unconditional bootstrap distribution while the residual approach provides a con-

ditional bootstrap distribution. The conditional factor retains to the observed data

set. The re-samples of the training observations in the pairs approach allow for an

underlying distribution of the population to be found rather than the distribution

found strictly from the training observations used by the residuals approach. One

must select the appropriate method pertaining to their target objective.

A bootstrap aggregated (bagged) predictor is an ensemble of predictors trained

on unique bootstrap samples and combine to form an aggregated predictor [10].

The bagged predictor is constructed by creating B predictors. B bootstrap

samples are then created from the original training data set. The bth predictor is

trained on the bth bootstrap sample. Result ŷ from a bagged predictor is found for

regression tasks by computing the mean (3.19) of each individual predictors outputs

ŷb while in classification a vote is taken.

ŷ =
1

B

B∑
b=1

ŷb (3.19)

The model variance resulting from errors in model parameters is calculated by

the unbiased sample variance of the output of all learners in the ensemble,

σ2
ŷ =

1

B − 1

B∑
b=1

(ŷb − ŷ)2 (3.20)

As a result of sampling with replacement, when a bootstrap sample is created,

about 37% of the training examples are omitted, these are referred to as out-of-bag

(OOB) [11]. The noise term σ2
εi

in (3.3) is estimated by using a second bagged NN

which is trained on a new data set {(xi, r2i)}ni=1 which is constructed from OOB data.

23

Here xi are the inputs from the OOB samples and r2i are the variance squared residuals

found by (3.21). The variance squared residual is a function of the target value of the

OOB sample ti, the ensemble output mean ŷi and variance σ2
ŷi

between all network

outputs. ŷi and σ2
ŷi

are found by (3.19) and (3.20) respectively. Training the noise

estimator on OOB samples provides for an unbiased estimation.

r2i = max((ti − ŷi)2 − σ2
ŷi
, 0) (3.21)

The network estimating σ2
εi

is trained until the log likelihood error function (3.22) is

minimized.

L ≡ −
∑
v

log

[
1√

2πχ2(~x)
exp(− r2(~x)

2χ2(~x)
)

]
(3.22)

The standard deviation of the total variance is then scaled by the t-score which can

be found in a Student’s t-table or as [31] has suggested by ensuring no more than

100α% of the training cases statisfy tα/2[v] ≤ |t(x) − ŷ|/s(x). The final prediction

interval is defined by (3.23).

ŷ ± tα/2[v]
√
σ2
ŷ + σ2

ε (3.23)

3.3 Architecture

ALINK has been developed to provide guidelines for producing the desired effects

as discussed prior. ALINK is comprised of four components displayed in Figure 3.3.

The learner component is trained on observed data and produces an estimate of the

target function. The implementer can determine which inductive learning algorithm

suits their needs best whether a NN, SVM, etc. The confidence component computes

the learners PI for the current inputs which can be any method discussed in Section

24

3.2. The knowledge component provides a separate estimation of the target function

based on acquired domain knowledge. This typically would be represented as an

expert system. The supervisor component determines the output of the system based

on information provided from the learner, knowledge, and confidence components.

Figure 3.3: Overview of ALINK components. Current input values ~x are fed to the
learner and knowledge base. Both produce estimates of the target output. How
the estimates are fused together to form the output is determined by the prediction
confidence.

ALINK is flexible enough to use any inductive machine learning algorithm as

long as a prediction interval can be derived. Additionally the knowledge component

is not restricted to any particular implementation just as long as domain knowledge

can be used to produce its own prediction. The supervisor component fuses together

ŷ and ẑ based on the learners confidence and is the novel work presented here.

Using the output from the knowledge component ẑ we derive a more specific

PI estimate P̂ I from (3.24) based on which side of the PI the knowledge estimate lies.

We assume the true output is more likely to reside in the direction of the result from

the knowledge estimate. We use the notation PI↑ to represent the upper PI and PI↓

as the lower PI. In methods where the PIs are symmetric P̂ I will simply equal PI/2.

25

P̂ I =


PI↑ ŷ < ẑ

0 ŷ = ẑ

P I↓ ẑ < ŷ

(3.24)

There must be a way to determine the level of agreement of the knowledge

estimate and learner. Since the learner will gravitate toward the knowledge estimate

we need to know to what degree. The gravitational attraction g(ŷ, ẑ) will provide

this measure. As a proof of concept g is implemented as the linear relationship of ẑ

and ŷ, where m is the slope,

g(ŷ, ẑ) = mẑ − ŷ (3.25)

Different methods may be used, however since the additional knowledge is

to fill gaps in training data the gravitational pull will typically be in some form

of an increasing function. For instance the designer may not want the relationship

between the knowledge estimate and learner to be linear. Perhaps if there is a large

disagreement between the two the ẑ should have less influential power the father way

it is or vice versa. Other functions such as polynomials and exponentials may be

better applicable.

The supervisor adjusts the learners output according to (3.26) to produce the

final output Ŷ where range(y) is the range in which the output y may represent. The

ratio of P̂ I and range(y) provide for a scaled representation of the learners confidence,

that is, P̂ I is normalized by the total possible range of y.

Ŷ = ŷ + g(ŷ, ẑ)
P̂ I

range(y)
(3.26)

26

If both estimations are in agreement then g = 0 which cancels the second term

in (3.26) and ALINK output simply becomes the output of the learner.

ALINK will use all available knowledge, that being said there may not be

knowledge available about every single parameter. In high dimensional problems

this may be more of a concern. Essentially ALINK evaluates the given inputs and

compares the input values to the knowledge base to determine if knowledge exists for

any of the expressed input values. This process is outlined in the flow chart in Figure

3.4. First the learner makes its prediction from the current input values ~x to derive ŷ.

Many machine learning algorithms require data to be normalized, however knowledge

is represented by their true values. In order to determine if knowledge exists for the

current inputs they must be denormalized so they can be compared to the knowledge

base. If knowledge exists about the current input values the fusion of the learners

output, confidence and knowledge will take place.

27

Figure 3.4: Flow chart describing how ALINK makes a prediction. In order for
ALINK to utilize additional knowledge in its prediction it must first make sure that
the input values in ~x have knowledge associated with them. If no knowledge exists
then the output is simply the output ŷ of the learner.

A question may be, if knowledge rules exist for given inputs, why even consider

the estimation ŷ of the learner so Ŷ = ẑ? If knowledge existed for every single input

28

parameter, for every possible value than this may be an option however as previously

discussed, ALINK’s flexibility allows for select knowledge about parameters thus we

must use the learner to provide additional information not covered by the knowledge.

Additionally knowledge may be fuzzy and there will be a point in which the learner

may be more accurate than the fuzzy system. ALINK’s goal is to incorporate all

available knowledge and information to make the most accurate prediction.

3.4 Experimental Implementation

ALINK implementation to be used for the extent of this thesis utilizes a fuzzy system

for the knowledge base and a bagged NN as the inductive machine learning algorithm

and PI method. As domain experts typically communicate there knowledge with

vague linguistic terms, it is an attractive option to translate their knowledge into

fuzzy logic. The added benefit of using bagged NN is it allows us to use bootstrapping

as our method for deriving prediction intervals. ALINK implementation is written

in Java to be run cross platform and take advantage of the numerous open source

libraries available.

3.4.1 Learner

Typically a single estimator is more uncertain than an aggregation of estimators as

the estimators may be constructed with non-optimal initial conditions or suffer from

overfitting based on the partitioning of the data set [69, 80]. It has been demonstrated

in multiple examples [10, 29, 80] that an aggregation of predictors can provide for

increase in accuracy, improved generalization and robustness when compared to a sin-

gle predictor. ALINK implementation uses an aggregation of NNs to take advantage

of these properties. The construction of this model is displayed in Figure 3.5.

29

Figure 3.5: Illustration of an ensemble of neural networks. The input is fed to each
network in the ensemble. The output ŷ is the average of all network outputs in the
ensemble.

Each neural network is constructed using the Java distribution of the Encog

machine learning framework. Encog provides for a wide range of machine learning

algorithms and data management tools.

3.4.2 Knowledge

Fuzzy logic provides a way to represent logic as an approximation rather than the

strict truth. Linguistic variables are assigned linguistic terms which define a range

30

of values rather than a typical crisp value. There must be a linguistic variable for

each input and output of the system. Each linguistic variable is represented by a

membership function describing all possible linguistic terms the variable can equal.

IF-THEN rules are formed by pairing a linguistic variable to a term for the input and

output to govern the system. For example a fuzzy logic controller for a fan may have

a rule IF temperature IS hot THEN speed IS fast. Here temperature and speed are

variables and hot and fast are the terms respectively.

A fuzzy system, Figure 3.6, consists of four primary components, the fuzzifier,

inference mechanism, rule-base and defuzzifier [59]. During fuzzification, crisp values

are converted into fuzzy values. The rule-base is a collection of ”IF-THEN” state-

ments. The inference mechanism interprets the fuzzy input and determines which

knowledge to apply. Defuzzification then converts the output of the inference back

into a crisp value.

Figure 3.6: Overview of fuzzy system architechure.

Many different methods for defuzzification exist such as Centre of Gravity

(COG), Centre of Area (COA), Left Most Maximum (LM) and Right Most Maximum

(RM) [59]. COG is the method used in this implementation for defuzzification (3.27)

where u is the output variable µ(u) is the membership function for variable u and

Min and Max are the defuzzification bounds.

U =

∫Max

Min
uµ(u)du∫Max

Min
µ(u)du

(3.27)

31

ALINK uses the jFuzzyLogic [16] Java library to handle the fuzzy system.

jFuzzyLogic implements the fuzzy control language (FCL) IEC-61131-7 specification

which allows for easily maintaining a knowledge base defined in a FCL file. Once

jFuzzylogic is integrated into ALINK, the only future modifications needed to be

made are to the FCL file. This file defines all variables, membership functions and

rules to be used by the fuzzy system.

Relating to Figure 3.4, before the input values ~x can be used by the fuzzy

system they must be denormalized. Each normalized value x∗ is denormalized to

x according to (3.28) where dL and dH are the minimum and maximum values x

represents in the training set, nL and nH are the low and high bound normalized

values respectively. This is achieved using Encog’s Analyst. The Analyst is a module

that performs analytic tasks on data such as normalization. Before training occurs

the training data is analyzed by Encog and produces a report containing a metrics of

the data such as minimum and maximum values of each parameter. The fuzzy system

component uses the Analyst report during predictions to denormalize the input so it

can be interpreted by the fuzzy system.

x =
(dL − dH)x∗ − (nHdL) + (nLdH)

nL − nH
(3.28)

3.4.3 Confidence

Reference [3] claims that bootstrapping can be helpful when:

• the theoretical distribution or a statistic is complicated or unknown

• the sample sample size is insufficient for straightforward statistical inference

• power calculations have to be performed, and a small pilot sample is available

32

Primarily because ALINK is most beneficial for small data sets where gaps may

occur in data, bootstrapping is chosen as the method to construct PIs to determine

the confidence of the learner.

3.4.4 Supervisor

The degree of assistance the supervisor provides can now be defined in detail as we

have defined our learner as a bagged NN and a fuzzy system as the knowledge base.

The gravitational pull (3.25) introduced in Section 3.3 is now redefined as (3.29),

where the slope m = 1.

g(ŷ, U) = U − ŷ (3.29)

Further substituting of (3.26) with our selected implementations we derive (3.30)

as ALINKs output. Since PIs found by bootstrap are symmetric, P̂ I equals the

right hand side of (3.23). The data is to be normalized between [-1, 1] resulting in

range(y) = 2 and we are looking for a 95% confidence interval in which α=0.05.

Ŷ = ŷ + g(ŷ, U)
t0.25[v]

√
σ2
ŷ + σ2

ε

2
(3.30)

33

Chapter 4

Experiments and Results

4.1 Defining Nerve Guidance Conduit Performance

ALINK is most beneficial in scenarios where domain knowledge exists and the sample

collection is small. To test the performance benefits of ALINK under these conditions,

the prediction of NGC performance is an ideal candidate as domain knowledge has

been collected from conclusions drawn from the various experiments and the sample

size is small as a single experiments may take as long as 60 weeks to complete [13].

Severe peripheral nerve injuries require surgical intervention to restore func-

tionality. Currently the standard method for repair for nerve gaps > 4mm is to

perform an autograft [79]. An autograft is a method in which a segment of nerve is

removed from a secondary site and applied to the site of injury. However there are

many risks involved in this procedure such as damage occurring to the secondary site

or compatibility issues between the injured nerve and the transplant.

A NGC attempts to eliminate these risks, it is a tubular device used to bridge

together the damaged peripheral nerve. Currently a variety of different construction

methods are being experimented upon to try and develop an optimal construction to

allow for the nerve to be properly regenerated. In order to compare the performance of

different construction methods a number of different measurements have been devised

including %N, L/Lc and ∆L [76].

%N is the success of regeneration of the nerve from study in which the nerve

bridged the full gap. This dimensionless measure is ideal for comparison as it being

a percent has known bounds which will be beneficial when normalizing data. How-

34

ever %N is not always reported and the way to derive %N may fluctuate between

studies, reported values may be bias as different studies perform a different number

of experiments.

L/Lc is the ratio of the gap length of the peripheral nerve injury, L, and the

critical axon elongation Lc. Lc is obtained from a characteristic S-curve. The S-curve

is found by plotting %N of an NGC versus gap lengths for various experiments. The

gap length in which %N=50 is Lc. L/Lc acts as a normalization function to allow

comparison between different species however it is assumed the Lc of the specie is the

same which may not always be the case. Furthermore the measure Lc does not have

known bounds which can pose issues when normalizing a data set.

The difference between the reported L/Lc of two NGCs is denoted ∆L. Typi-

cally ∆L is used as a measurement to determine how well the NGC performed com-

pared to a standard conduit. A standard conduit is the simplest of conduits in which

no factors are added to enhance its nerve regenerative activity. The standard conduit

provides a control in the experiment. Although ∆L is useful to compare performance

across multi-species and addresses the issues L/Lc has with Lc not always being the

same within the specie, it suffers from the same issue as L/Lc not having an upper

bound. The equation to compute ∆L is defined in (4.1) where L/Lexpc is the L/Lc

value of the experimental conduit and L/Lstdc is the L/Lc of the standard conduit.

∆L = L/Lexpc − L/Lstdc (4.1)

If a prediction model is accurate, it can aid in developing successful construc-

tion strategies which can potentially result in saving time, money and resources bring-

ing the product to the market. My colleagues and I have previously used bagged NN

to predict NGC performance [47], this thesis work expands on this research by incor-

35

porating collected domain knowledge.

4.2 Data Preparation

Data was extracted from 28 scientific publications in which the gap length of the

injury, construction methods, performance results of the experimental conduit com-

pared to a standard conduit and experimental run time was reported [4, 5, 9, 12–15,

18, 20, 21, 25, 27, 33, 34, 36, 38–40, 49, 51, 57, 67, 71, 73–75, 77, 79].

The run time (in weeks) in which each experiment was conducted is a crucial

variable. Under proper conditions given unlimited time and resources the nerve should

be able to bridge the gap. Reporting the length the nerve grew does not provide

enough information to be able to make a proper prediction of the performance of the

NGC. It is not until we are given perspective as to how long it actually took to grow

the nerve said length that we are able to develop a forecast. Some experiments may

be cut short or not allow the nerve to grow the required time to bridge the gap. For

this reason time is defined as an output to the prediction model. Not only will an

indication of how well the nerve grew be reported but also the expected time period

these results will occur.

Referring to the previously discussed methods of determining a measure for

NGC performance, ∆L is selected as the second output to the prediction model

representing how well the NGC performed. ∆L allows for a comparative measure of

performance across different species and poses the least number of issues to be used

by a learner. The primary disadvantage of use ∆L is the unknown upper bound. This

will require the data set to be re-normalized if new records are add in which the ∆L

exceeds the current max value of ∆L.

138 cases were extracted from literature. Of these cases, 40 input parameters

36

were identified to be significant in determining the performance of a NGC. These

input parameters include construction methods, materials, growth factors and other

properties which affect the nerve regenerative activity. A complete list of input pa-

rameters used in the model are displayed in Table 4.1. Pre-processing was conducted

to removed duplicate case, those cases in which every input parameters was identical

to other cases. This resulted in 109 cases which were used for training ALINK learner

and testing ALINK.

Table 4.1: The input parameters categorized based on their application to the devel-
opment and enhancement of NGCs

Category Model Input Parameters

Materials Processing Phase Separation, Hydrogels, Electrospinning,
Reverse Plating, Micropatterning, Liquid Filled

Structure Fiber-Aligned, Fiber-Random, Gel, Permeable,
Solid Tube (Impermeable), Microsphere, Porous,
Internal Diameter, Wall Thickness, Lumen

Materials Collagen, Ethyl Vinyl Acetate, Polycaprolactone,
Poly Lactide, Poly Glycolic Acid, Poly Lactide
Co Glycotide, Chitosan, Poly Phosphazene, Poly
Pyrrole, Poly Sulfone, Silicone

Form Hydrogel, Liquid, Gel, Matrix, Fiber-Aligned,
Fiber-Random, Microsphere, Solid

Growth Factors NGF, NT3, BDNF, CNTF, GDNF, PDGF,
VEGF, FGF, Denatured FGF, IGF, Laminin, Fi-
bronectin, Schwann Cells, Bone Marrow Stromal
Cells, Neural Crest Stem Cells, Fibroblasts, α1-
GP

Growth Factor
Arrangements

Gradients or Anisotropic, Isotropic

Each value x was normalized to x∗ between -1 and 1 using min − max normal-

37

ization according to (4.3) where dL is the minimum value parameter x can represent,

dH is the maximum value parameter x can represent, nL is the normalized lower

bound, -1, and nH is the normalized upper bound, 1.

x∗ =
x− dL
dH − dL

× (nH − nL) + nL (4.2)

= 2

(
x− dL
dH − dL

)
− 1 (4.3)

In order to attempt to decrease complexity of the model, categories in which

all parameters contained boolean values were encoded in a binary encoding. Boolean

values are those parameters indicating whether or not a parameter was used in con-

struction of the NGC. Pruning parameters was avoided to prevent the loss of infor-

mation for the explanation of performance of a conduit. All possible combinations

of the boolean inputs were derived from literature review and general knowledge of

peripheral nerve regeneration through application of NGCs.

The input combinations were used for condensation to keep the number of

inputs to the prediction model to a minimum, thus reducing the search space resulting

in a higher obtainable accuracy. The possible combinations can be seen in Table 4.2.

The combinations shown are derived from general knowledge as well as the articles

used to develop the dataset used to develop and support the prediction model. As

advances are made in the field and complexity of combining materials advances this

will be revisited.

In addition to extracting data from literature to train ALINKs learner, knowl-

edge rules were also obtained. These knowledge rules were the result of authors

making conclusions about specific construction methods they used during experi-

mentation. The collection of knowledge rules from the various scientific publications

38

Table 4.2: The possible combinations for categorical fields in which parameters are
boolean types. The identification of combinations allows for parameter condensing
and to be represented in a binary encoding scheme.

Category Possible Combinations

Materials {Collagen}, {Silicon}, {Ethyl Vinyl Ac-
etate}, {Polycaprolactone}, {Polylactide},
{Polylactide co-glycolactide},{Polysulfone},
{Poly-pyrrole}, {Polypyrrole,Polycaprolactone},
{Polypyrrole,Polylactide}, {Polycaprolactone,
Polylactide}

Materials Processing {Hydrogels},{Liquid Filled}

Form {Matrix}, {Gel}, {Liquid},
{Matrix,Microspheres}, {Gel, Microspheres},
{Liquid,Microspheres}

Growth Factor
Arrangements

{Isotropic},{Anisotropic, Gradient}

served as the knowledge base for ALINKs fuzzy system knowledge component. Each

extracted rule from literature had to be converted into a fuzzy rule,

1. IF schwann cell count IS increasing THEN ∆L IS larger [5]

2. IF bone marrow stromal cell count IS increasing THEN ∆L IS med [14]

3. IF pore diameter IS small THEN ∆L IS medium high [12, 13, 57, 67]

4. IF pore diameter IS large THEN ∆L IS larger [12, 13, 57, 67]

5. IF pore diameter IS very large THEN ∆L IS low [12, 13, 57, 67]

6. IF c-ions IS low AND b-FGF IS low THEN ∆L IS larger [36]

7. IF BSA IS present AND b-FGF IS medium THEN ∆L IS larger [4, 36]

39

8. IF (NGF IS low) OR (NGF IS med) OR (NGF IS high AND NGF Delivery

IS step AND laminin IS low) OR (laminin IS medium) OR (laminin IS high

AND laminin application IS step) OR (laminin application IS continuous)

THEN ∆L IS medium [21, 49]

9. IF (NGF IS low) OR (NGF IS high AND NGF Delivery IS uniform) THEN

∆L IS low [21, 73]

Variables in the knowledge rule were identified and membership functions cre-

ated to define the possible known values the variable could represent. Each rule

defined the expected ∆L based on the particular combinations of construction meth-

ods.

However due to the limited number of conclusions draw from literature the

derived membership functions are incomplete. Few values were tested for input pa-

rameters and as a result the output given for input parameter values outside of these

tested values is uncertain. Additionally since the rules are selective and do not exist

for every input parameter there is risk that there may be input parameters which do

not have rules causing unexpected results. The membership functions are displayed

in Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12.

This knowledge system is meant to serve as an initial proof of concept, as

advances in the field continue membership functions will continue to evolve. It is

also important to note that the terms assigned to membership functions may not be

the true representation. For example the concentration of NGF defined to be low in

Figure 4.10 may not truly be low compared to all other possible concentrations. This

may be more clearly illustrated by c-ions, Figure 4.6, where the only experimented

value is 30× 1014/mm2. The value 30× 1014/mm2 may not be low, it may actually

be high for this type of application. It is not until further experimentation is done in

40

the field that the membership functions and terms will be more clearly defined.

The accuracy ALINK reports increases as the number of records with corre-

sponding domain knowledge increases. This of course is only valid if the rules are

high quality. Of the 109 samples extracted from literature 17 of these were applicable

to use the knowledge component in ALINK. As previously mentioned knowledge does

not exist for all 40 parameters, ALINK will use all available knowledge to make the

most accurate prediction.

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

D
e
g

re
e

 o
f

M
e

m
b
e

rs
h

ip

Pore diameter (nm)

low med large

Figure 4.1: Membership function for input parameter pore diameter. Data extracted
from [12, 13, 57, 67].

41

10
2

10
3

0

0.2

0.4

0.6

0.8

1 low high

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

Laminin (µ g/mL)

Figure 4.2: Membership function for input parameter laminin concentration. Data
extracted from [21, 49].

1 2 3 4
0

0.2

0.4

0.6

0.8

1 uniform continuous step coated

D
e
g

re
e
 o

f
M

e
m

b
e
rs

h
ip

Laminin Application

Figure 4.3: Membership function for input parameter laminin application. Data
extracted from [21, 49].

42

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

α1−GP (% w/w)

low

Figure 4.4: Membership function for input parameter α1-GP. Data extracted from [4].

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f
M

e
m

b
e
rs

h
ip

Bone marrow stromal cells

increasing

Figure 4.5: Membership function for input parameter bone marrow stromal cells.
Data extracted from [14].

43

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

C−ions x 10
14

/mm
2

low

Figure 4.6: Membership function for input parameter c-ions. Data extracted from
[36].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

0.2

0.4

0.6

0.8

1

D
e
g

re
e
 o

f
M

e
m

b
e
rs

h
ip

FGF (% w/w)

low med

Figure 4.7: Membership function for the input parameter b-FGF. Data extracted
from [36].

44

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

Lumen channels

two four seven

Figure 4.8: Membership function for input parameter lumen channel count. Data
extracted from [13, 39, 40, 57, 67, 71, 75, 77, 79]

1 2 3
0

0.2

0.4

0.6

0.8

1

D
e
g

re
e
 o

f
M

e
m

b
e
rs

h
ip

NGF delivery

uniform continuous step

Figure 4.9: Membership function for input parameter NGF delivery. Data extracted
from [21, 49, 73]

45

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f
M

e
m

b
e
rs

h
ip

NGF (µ g/mL)

lowest very low med low low med med high high very high highest

Figure 4.10: Membership function for input parameter NGF. Data extracted from [21,
49]

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

increasing

D
e

g
re

e
 o

f
M

e
m

b
e

rs
h
ip

Schwann cells (x 100,000

Figure 4.11: Membership function for input parameter Schwann cells. Data extracted
from [5].

46

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1 none minor small medium large larger

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

∆L

Figure 4.12: Membership function for the output ∆L. As mentioned in Section
4.1 the unbound nature of ∆L is a disadvantage of using this representation therfore
membership functions are only created based on experimental evidence. The collected
records were clustered to determine the number of terms needed.

4.3 Experimental Setup

To test the accuracy of the ALINK predicting NGC performance, we compare it to

the accuracy of a FFNN, a bagged NN, and SWarm Intelligence based Reinforcement

Learning (SWIRL).

SWIRL [17], which seems to be the only other model attempting to predict

NGC performance, is used as comparison. SWIRL is a school system model where

ant colony optimization (ACO) [22] acts as the administrator, particle swarm opti-

mization (PSO) [44] represents the teachers and each NN in an ensemble acts as a

student. ACO essentially models the navigation behaviour of ants and is applied in

this context to find the optimal NN topology and PSO is used to train each of the

NN students. PSO is a population based optimization algorithm in which particles

evolve in search-space to find solutions to a problem. Once SWIRL finds the optimal

NN it can be used for testing. The SWIRL model was configured with 100 students,

47

PSO parameters of cognitive and social learning rates set to 2.0 and inertia weight

set to 0.8, and ACO parameters of pheromone influence factor α = 2.0, desirability

influence factor β = 1.0, and pheromone persistence ρ = 0.5. The SWIRL model uses

one hidden layer where hidden units range from 3 to 15. Linear transfer functions

were used for input units and hyperbolic tangent transfer functions were used for

hidden and output units.

The remainder of the models are trained with BP and PSO. Backpropagation

is chosen as a benchmark since it is the most commonly used training algorithm. The

learning rate was set to 0.01 and the momentum to 0.95. PSO was configured to have

an initial population of 40, cognitive and social learning rates set to 2.0 and inertia

weight set to 0.4. Max velocity was limited to 2.0.

Tests were conducted to find the optimal network topology for each training

strategy with the exception of SWIRL since its topology is dynamic. According

to [30], one hidden layer should be sufficient for modelling most scenarios however

two may be needed for more complex situations. One of many rules of thumb for

determining hidden node count is to have the count between the number of input

nodes and number of output nodes. Based on this information network topologies of

one and two hidden layers are investigated.

For networks trained with backpropagation, the hidden nodes for each layer

range between 1 and 40 nodes and when trained with PSO, the hidden nodes for

each layer range between 1 and 10 nodes. The number of hidden nodes is limited to

10 when trained with PSO based on previous experience of not seeing added benefit

above this number that come with additional computational expense. 50 instances

of the data set are randomly partitioned at the beginning of the experiment so each

topology is trained and tested on each of the 50 instances to ensure results reflect

topology performance. The average mean squared error (MSE), µMSE, of the 50 trials

48

is determined for each topology.

Results displayed in Fig. 4.14 conclude that the optimal topology for a network

trained with backpropagation for this data set is a network with two hidden layers,

the first with 20 hidden nodes and the second with 1 hidden node. The results for

training with PSO displayed in Figure 4.15 conclude a single hidden layer with 5

nodes is optimal. From this point forward experimentation using networks trained

with backpropagation are implemented with a network topology of 40-20-1-2 and

when trained with PSO are implemented with a topology of 40-5-2.

The network input units were constructed with linear transfer functions (4.4)

while hyperbolic tangent transfer functions (4.5) were used for the hidden and output

units. Bias units are used for hidden and output layers.

φ(x) = x (4.4)

φ(x) =
e2x − 1

e2x + 1
(4.5)

The NNs implemented for all models with the exception of SWIRL is displayed in Fig-

ure 4.13. However when trained with backpropagation the network has an additional

hidden layer not shown.

49

Figure 4.13: Neural network implementation used for predicting NGC performance.
Input layer consists of 40 units each constructed with linear transfer functions. Hidden
and output nodes are constructed with hyperbolic tangent transfer functions. Bias
units, those units labelled 1, are used for hidden and output layers. Network outputs
are ∆L and time t which ∆L can be expected.

50

Figure 4.14: Color map displaying network topology performances when trained with
backpropagation. The color bar indicates the average MSE, µMSE, of 50 trials con-
ducted for each topology. 50 instances of the data set are randomly partitioned at
the beginning of the experiment so each topology is trained and tested on each of the
50 instances to ensure results reflect topology performance. Darker represents lower
error. The lowest error is acheived with 20 nodes in the first hidden layer and one
node in the second hidden layer.

51

Figure 4.15: Color map displaying network topology performances when trained with
PSO. The color bar indicates the average MSE, µMSE, of the 50 trials conducted for
each topology. 50 instances of the data set are randomly partitioned at the beginning
of the experiment so each topology is trained and tested on each of the 50 instances
to ensure results reflect topology performance. Darker represents lower error. The
lowest error is acheived with 5 nodes in the first hidden layer and zero nodes in the
second hidden layer (i.e., the second layer is not used).

With data prepared and models configured, experimentations are ready to run.

Before continuing, the bootstrap confidence implementation is tested to ensure proper

functionality using a synthetic data set in Section 4.4.1. After the implementation is

verified the optimal number of networks to be used in the bagged NNs needs to be

determined in Section 4.4.2. The number of networks B ranged from 20 to 200 incre-

mented by 20 which has been suggested by [23] to demonstrate the best performance.

Bootstrap pairs approach is selected for sampling because we are concerned with an

unconditional distribution and do not want to be limited to the collected training ob-

52

servations. The execution times training different ensemble size is reported in Section

4.4.3. With the optimal ensemble size determine benchmarking can be performed,

results are reported in Section 4.4.5. All experimentation was executed on a 64-bit

Intel R© CoreTMi7 @ 2.20GHz processor with 8GB of RAM.

4.4 Results

4.4.1 Bagged Neural Network Prediction Intervals

To ensure proper implementation of finding PIs using the bootstrap method a syn-

thetic experimentation was conducted similar to that found in [31]. Input values x

was sampled 1000 times between [-1,1] from a U-quadratic distribution. Two param-

eters must be defined for this distribution, a and b, the lower and upper limits which

in this experiment equal -1 and 1 respectively. The limit parameters further define

β, the gravitational balance center (4.6) and α the vertical scale (4.7).

β =
b+ a

2
(4.6)

α =
12

(b− a)3
(4.7)

The U-quadratic distribution has a probability distribution function (PDF)

defined by (4.8) and a cumulative distribution function (CDF) defined by (4.9).

Sampling from the U-quadratic distribution was achieved by extending the Abstrac-

tRealDistribution class available from the Apache Commons Mathematics Library.

PDF = α(x− β)2 (4.8)

53

CDF =
α

3

(
(x− β)3 + (β − a)3

)
(4.9)

The synthetic function used to generate the target is defined by (4.10). The

collected data was then randomly partitioned 5% training, 95% testing or 500 training

examples and 950 examples for testing.

t = sin(πx)cos(5π/4)
√

0.005 + 0.005(1 + sin(πx))2 (4.10)

A bagged NN was constructed with 10 networks each of which had 8 hid-

den nodes implemented with hyperbolic tangent activation functions while input and

output nodes were implemented with linear activation functions. The neural network

predicting noise was constructed with only a single hidden node.

The U-quadratic distribution was selected to clearly demonstrate the perfor-

mance of deriving PIs using the bootstrap method. This sampling allows for a higher

probability of samples to be drawn on the edge of the intervals while the least number

of samples drawn around 0. As a result we should see a narrower PI in areas in which

the model is trained with more examples and a wider PI in areas which are trained

more sparsely.

Figure 4.16 is the result of finding PIs using the bootstrap method. As expected

we can see that the PI is wider for values centered around x = 0 in which training

was more sparse in these areas. This functional example provided confirmation of the

proper Java implementation of the bagged NN with PI implementation providing the

base to build in the additional ALINK logic.

54

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
t

x

t = sin(πx)cos(5πx/4) +
√

0.005 + 0.005(1 + sin(πx))2

Predicted Output

95% Prediction Confidence Interval

Expected Output

Figure 4.16: An synthetic example of defining the 95% prediction interval using
the bootstrap method. A bagged NN is trained on a random U-quadratic sampling
between the interval [-1,1]. We can see that areas that are more dense during training
have narrower PIs indicating the model is more confident to predict these values.
Sparse samples centered around 0 have wider PIs indicating the model is less confident
in its prediction.

4.4.2 Optimal Ensemble Size

Before benchmarking is performed, the data set is randomly partitioned into 80%

training and 20% testing. This is repeated to form 20 unique training\testing pairs.

Each model in a benchmark trial is trained and tested on each pair. The MSE is

produced from each test set. The average MSE from the 20 sets is then reported for

comparison.

The optimal ensemble size when trained with backpropagation was found to

be 100 for the NGC data set. The average MSE for each ensemble size is displayed in

Figure 4.17. When the networks in the ensemble were trained with PSO the optimal

number of networks found was also 100 displayed in Figure 4.18.

55

20 40 60 80 100 120 140 160 180 200
0.16

0.17

0.18

0.19

0.2

0.21

0.22

B

µ
M

S
E

Bagged NN

ALINK

20 40 60 80 100 120 140 160 180 200
2

4

6

8

10
x 10

−3

B

σ
2 M

S
E

Bagged NN

ALINK

Figure 4.17: Results determining optimal number of networks to use in ensemble for
bagged NN and ALINK when trained with backpropagation. Top subplot is mean
MSE of 20 trials, while the variance between trials is shown in bottom plot.

56

20 40 60 80 100 120 140 160 180 200
0.095

0.1

0.105

0.11

0.115

0.12

B

µ
M

S
E

Bagged NN

ALINK

20 40 60 80 100 120 140 160 180 200
1.6

1.8

2

2.2

2.4

2.6
x 10

−3

B

σ
2 M

S
E

Bagged NN

ALINK

Figure 4.18: Results determining optimal number of networks to use in ensemble for
bagged NN and ALINK when trained with PSO. Top subplot is mean MSE of 20
trials, while the variance between trials is shown in bottom plot.

4.4.3 Execution Runtime

The training time of the incremental ensemble sizes was recorded during execution

of the experiment. In Figure 4.19 we can see that as the number of networks are

added there is a linear relationship in the training time. Networks trained with PSO

57

take about 20 times longer to train. Due to the incorporation of knowledge being

independent of training there is no additional computational expense.

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

B

µ
t
(m

in
u
te
s)

ALINK PSO

ALINK BP

Figure 4.19: Comparison of execution times to train ALINK with backpropagation
and PSO when implemented with a bagged NN. The time in minutes is an average
over 20 runs.

4.4.4 ALINK Candidate Cases

As outlined in Section 4.2, only 17 of the observed cases qualify as candidates to

test ALINK in its entirety. To illustrate how ALINK arrives at its prediction 7-fold

cross validation was performed on the data set so each observation would be used

during training and testing. The candidate cases were then parsed from the results

which are displayed in Figure 4.20. It is interesting to note that some cases which

58

−2

−1.5

−1

−0.5

0

0.5

1

1.5

∆
 L

Bagged NN

Target

FS

ALINK

Figure 4.20: Details of ALINK deriving the output for candidate cases. The plot
shows the output of the each components in the framework. The circle outline rep-
resent the output from the FS, diamonds represent the output from the bagged NN
while the error bars represent the 95% PI of the bagged NN prediction. The bagged
NN was constructed using the optimal size ensemble B = 100 trained with PSO.
Finally the output from ALINK is represented by the solid circle. To give perspective
the target ∆L output is represented by a solid square. For cases that have wider
intervals the learner output gravitates more toward the fuzzy system. This concept
illustrates the gravitational pull toward the knowledge base to provide for more ac-
curate prediction when confidence is low.

have accurate bagged NN outputs form very large PIs. This is a good indicator

that other PI construction methods should be investigated as the ALINK model is

only has accurate as its individual sub-components. If the PIs are inaccurate causing

particularly wide PIs while the predictor is accurate, it can cause the output to be

overshot gravitating strongly to the FS when in reality the learners prediction was

more accurate.

59

4.4.5 Benchmarking

Using the optimal ensemble size, ALINK performance is compared to a FFNN, bagged

NN and SWIRL in which the FFNN and bagged NN are both trained with backprop-

agation and PSO. Each model tested has its MSE (4.11) calculated for each of the 20

trials,

MSE =
1

n

n∑
i=1

(ŷi − yi)2 (4.11)

where n is the number of testing examples, ŷi is the predicted value by the model and

yi is the ideal value. The MSE values of each of the 20 trials is averaged,

µMSE =
1

N

N∑
i=1

MSEi (4.12)

This measure it was is used for comparison. The sample variance is calculated between

all trials,

σ2
MSE =

1

N

N∑
i=1

(MSEi − µMSE)2 (4.13)

The results displayed in Figure 4.21 show that ALINK when trained with PSO

out performs all other methods. The overall mean and variance of the MSE found

from each experimental trial is displayed in detail in Table 4.3. The primary difference

between the FFNN trained with PSO and SWIRL is the dynamic topology SWIRLs

implements. The FFNN trained with PSO proves more accurate thus suggesting that

the stochastic nature of ACO misleads SWIRL to choosing a non-optimal topology

causing poor performance.

ALINK proved to show a 6% decrease in error from a standard bagged NN.

Because the incorporation of additional knowledge is the distinguishing factor be-

tween these two methods this decrease in error is a reflection of the collected domain

60

knowledge. As more knowledge is discovered about NGC performance ALINK will

continue to be more accurate than a bagged NN. ALINK showed a 44% decrease in

error over SWIRL demonstrating that it is able to aid in developing more accurate

strategies for NGC construction than SWIRL was able to accomplish.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

ALINK B=100 PSO

ALINK B=100 BP

Bagged NN B=100 PSO

Bagged NN B=100 BP

FFNN PSO

FFNN BP

SWIRL

µMSE

Overall
Time
∆L

0 0.005 0.01 0.015 0.02 0.025

ALINK B=100 PSO

ALINK B=100 BP

Bagged NN B=100 PSO

Bagged NN B=100 BP

FFNN PSO

FFNN BP

SWIRL

σ
2

MSE

Overall
Time
∆L

Figure 4.21: Result of models benchmarked. Top subplot is mean MSE µMSE of 20
trials performed. The variance between trials σ2

MSE is shown in bottom plot.

61

Table 4.3: Summary of Benchmark Results

Model µMSE σ2
MSE

SWIRL 0.1744 0.0055

FFNN, BP 0.2294 0.0087

FFNN, PSO 0.1473 0.0038

bagged NN, B=100, BP 0.1859 0.0059

bagged NN, B=100, PSO 0.1062 0.0017

ALINK, B=100, BP 0.1673 0.0050

ALINK, B=100, PSO 0.0996 0.0016

62

Chapter 5

Conclusion

Collecting an adequate number of samples to make accurate predictions will con-

tinue be challenging in many domains. Luckily when domain knowledge exists there

are additional options that can be used to incorporate this information to increase

prediction accuracy.

Virtual examples are a useful option when synthesizing new training examples

are practical as the virtual examples are transparent to the learner allowing for no

modification of the machine learning algorithms. This allows the developer to use 3rd

party machine learning software packages. Determining the optimal way to generate

synthetic training examples is the main challenge as examples with high correlation

will be of little help to the learner.

Hints are an attractive option to incorporate prior domain knowledge. There

are many different types of hints to choose from and the effect each has during train-

ing can be controlled independently. Hints however are integrated directly into the

training algorithm. Modification of decent algorithms has been proposed however

because of there experimental nature it is not common practise and as such are not

included in machine learning toolboxes. To utilize hints it is left to the developer

make the proper modifications.

ALINK has been developed to be beneficial in scenarios where prior or post

domain knowledge exists and data is limited. Its primary objective was to serve as a

framework allowing the developer to select their own learner, trainer, and knowledge

base depending on the target application. It has been designed so the learners training

algorithm is not affected so any training algorithm can be applied. This allows the

63

developer to use 3rd party software out the box without modification to training

algorithms. ALINKs method of fusing information for different components based on

confidence is the novel method presented in this thesis. The method of measuring

the confidence of a predictor gives us an idea of how well we can trust the prediction.

If the predictor is not confident it should be assisted with any additional knowledge

available. Furthermore by keeping knowledge integration independent of training it

allows for post knowledge incorporation. When new data becomes available in the

form of knowledge, rules can be modified, added or removed without the need of re-

training a learner. This can be particularly useful when working with large data sets

where training can be very time consuming or for devices which ALINK is deployed

with minimum hardware where re-training would be unrealistic.

ALINK however is only as accurate as its subcomponents. If a poor method

for confidence is selected the impact the knowledge has on the output could actually

cause more harm than good. The same applies to the rules defined in the knowledge

base.

ALINK has been demonstrated to be useful for modelling systems where data

is collected from long-term experiments. Long-term experiments are seen in almost

every domain such as tissue engineering. Predicting the performance of a NGC is a

perfect example as single experiments may take as long as 60 weeks to complete [13].

This in conjunction with large number of model parameters causes the predictors to

suffer from Hughs Effect [58] in which the prediction accuracy decreases as the dimen-

sionality of the problem increases. The high dimensionality also causes the learner

to be subjected to overfitting when data set size is small. Overfitting was addressed

by using a bootstrap aggregated neural network learner implementation in ALINK

providing for enhanced generalization capabilities. It has been demonstrated that

ALINK is able to increase prediction accuracy of NGC performance by incorporating

64

domain knowledge. Providing the additional domain knowledge allowed for the model

to fill the void where training examples were sparse. As more rules are discovered

about NGC construction, accuracy will continue to increase. The model outper-

formed a single FFNN, bagged NN and SWIRL when trained with PSO. ALINK

demonstrated a 44% decrease is MSE compared to SWIRL, the only other model to

be known of predicting NGC performance. Although training the bagged NN with

PSO was computationally expensive the significant decrease in error out weighed the

negative effects. This advancement in prediction will further enhance the progress

towards developing an optimal conduit to restore function from a peripheral nerve

injury.

65

Chapter 6

Future Work

In Section 4.1 possible output representations of NGC performance was discussed.

Although ∆L was selected to be the best option, the unbound value will create

problems in the current implementation if values are used outside of the collected

training data. Due to the data normalized between [-1,1] and hyperbolic tangent used

as the activation function for the output nodes, the predicted ∆L is limited to the

max value in the training data. To address this issue alternative activation functions

for output nodes will be investigated to improve robustness. For example exponential

activation function have been used to enforce positive values in [45] and [53].

At this time, knowledge rules only exist for the ∆L output. To provide for a

more accurate indication of when the expect ∆L will occur, knowledge rules also need

to be developed for the time output. We already have some knowledge about the

time output, given unlimited time and resources, nerve regeneration should continue.

Thus given a short time we expect a small change in ∆L. Time and ∆L are strongly

correlated but the exact relationship is dependent on construction parameters. This

information must be correctly interpreted so it can be translated into rules to be used

by ALINK.

The prediction of NGC performance is still in its infancy. Continued improve-

ments need to be made to the knowledge rules primarily in respect to expanding the

membership functions. As advances are made in the field and additional experiments

are conducted, the knowledge base will continue to evolve. Additionally further re-

search needs to be completed in regards to each input parameter. This will aid in

defining membership functions more accurately and creating more appropriate terms

66

associated with each membership function. For example it would be very beneficial

to obtain the saturation point of each mixture input parameters such as laminin and

NGF to be able to define bound limits.

It is imperative the collected data used in this thesis be made available to the

public to continue the progression of modelling performance of NGCs. An enormous

effort which spanned many months was made by my colleagues to identify publica-

tions involved in performing experiments on NGC construction, extracting available

information relevant to predicting NGC performance, formatting data and compiling

data into a central repository. A web application is needed to provide a portal to

allow others to add data in the form of experimental results and/or knowledge rules.

The central public repository will also allow for other models to be tested with this

data equating to greater attention in the community to further progress construction

of NGCs.

As a proof of concept, ALINKs gravitational pull was defined as linearly in

(3.25). As the knowledge is intended to fill the gaps in training, if the disagreement

between the output of the learner and knowledge is great it is probably an indication

the estimate was inaccurate thus the output shall gravitate more favourably toward

the provided knowledge. For this reason it may be more accurate to define the gravi-

tational attraction in a non-linear fashion. In Figure 6.1 a linear, 2-degree polynomial

and exponential gravitational pull are compared.

67

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

g(
ŷ
,
ẑ
)

ẑ

g(ŷ, ẑ) = ẑ

g(ŷ, ẑ) = exp(ẑ) - 1

g(ŷ, ẑ) = ẑ
2

Figure 6.1: Possible examples of alternative functions for defining the gravitational
pull.

Assuming in this example the estimate of the learner is ŷ = 0 and the knowledge

output is ẑ we can see the affects the different functions will have on the gravitational

attraction. The linear attraction provides for a proportional increase in pull the

farther ẑ is from ŷ however the exponential pull would provides a more aggressive

approach, dramatically pulling the output to that determined by the knowledge.

The effects of a 2-degree polynomial would allow the pull to remain weak until the

critical point is reach in which the pull becomes increasingly stronger. Future work

will investigate potential use cases for selecting different equations for defining the

gravitational attraction between ẑ and ŷ.

The focus of this thesis was to introduce a new method to more accurately

estimate NGC performance. This was achieved by incorporating knowledge into a

prediction based on the learners confidence. Further investigation needs to be con-

68

ducted to compare the benefits of using ALINK over virtual examples and hints.

Future work will include benchmarking ALINK against these other two methods.

Additionally, to exam the robustness of ALINK other data sets need to be tested.

Since ALINK implementation used in this thesis uses a fuzzy system and pro-

vides a fuzzy estimate of the prediction, once the learners confidence is high, a point

will eventually be reached in which the learner is more accurate than the fuzzy sys-

tem. Investigation still needs to be explored as to what point the learner over takes

the knowledge system and the negative affects that may result from the output always

gravitating toward the knowledge system.

A primary advantage of ALINK is the ability to incorporate post domain

knowledge without the need to retrain a learner which can be a time consuming task

with big data. However when new observations are obtained we want to be able to

teach the learner this new information. Future work will investigate the performance

of implementing ALINK using online learning [43, 52, 72]. When the learner is young,

trained on limited data, it will be able to use the additionally provided knowledge as

a crutch for gaps in its training. As the learner grows, taught on new observations

the confidence of the learner should increase relying less on the supervisor.

Assuming the reported confidence of a learner is accurate, it provides powerful

insight on how the learners prediction can be used. When combining an ensemble

of experts it is usually performed by selecting the best classifier or performing an

average [6]. It was shown by [60] that taking the average of the highest confident

networks in an ensemble 80.2% accuracy predicting secondary protein structures was

achievable. By creating subsets of training data [37, 42] used divide-and-conquer to

form a hierarchy of experts. A gating network is then applied to determine which

expert handles which case. [32] reviews several methods for combining classifiers,

among these is Dynamic Classifier Selection (DCS) in which results are achieved

69

dynamically by a weighted average [6]. It will be investigated if an ensemble of learners

can formulate a more accurate result than reported by methods in [6] by exploiting

confidence of each learner to gravitate to a agreed upon output as demonstrated in

ALINK.

Obtaining a sufficient number of observations to train learners will continue to

be a problem in many domains. It is imperative to continue investigating methods to

incorporate as much available information about a system as possible to produce the

most accuracy predictions. ALINK has presented a novel method for incorporating

domain knowledge based on a learners confidence, continued efforts will be focused

investigating methods for exploiting confidence and domain knowledge to improve

prediction accuracy in domains where data is sparse and unbalanced.

70

Appendices

A Acronyms

ACO ant colony optimization 45, 46

ALINK Assisting Learners by INcorporating Knowledge xi, xiv, xv, 2, 3, 13, 22, 23,

25–27, 30–32, 35, 36, 38, 39, 45, 52, 54–59

bagged bootstrap aggregated xiv, xv, 21, 27, 31, 45, 50, 52–59

BP backpropagation 46

FCL fuzzy control language 30

FFNN feed-forward neural network 9, 45, 56–58

MSE mean squared error xiii, xiv, 46, 49, 50, 53–58

MVE mean-variance estimation 2, 15, 19

NGC nerve guidance conduit iv, x, xiii, 9, 10, 32–36, 45, 48, 53, 57

NN neural network xiv, xv, 2, 18, 21, 22, 27, 31, 45, 47, 50, 52–59

OOB out-of-bag 21, 22

PI prediction interval xiv, 14, 15, 17–19, 22, 23, 27, 31, 51–53

PSO particle swarm optimization xiii, xiv, 45–47, 50, 53, 55–58

SWIRL SWarm Intelligence based Reinforcement Learning iv, 45–47, 56–58

71

B Third-party Libraries

Name: Log4j 1.2.16

License: Apache License

Website: http://logging.apache.org/log4j/2.x/

Description: ”...a popular logging package for Java.”

Scope: This library was used for all data logging. Software results

were logged to later be processed by MATLAB.

Name: Encog 3.2.0-SNAPSHOT

License: Apache License

Website: http://www.heatonresearch.com/

Description: ”...an open source initiative to provide an advanced neural

network and bot framework for Java and DotNet.”

Scope: The Encog Java library is used to build and train all neural

networks. Additionally Encog tools are used for data man-

agement in particular normalizing data.

72

Name: jFuzzyLogic 2.1a

License: Apache License

Website: http://jfuzzylogic.sourceforge.net/

Description: ”jFuzzyLogic is a fuzzy logic package written in java (as you

might have guessed). It implements Fuzzy control language

(FCL) specification (IEC 61131 part 7)”

Scope: jFuzzyLogic provides support for the knowledge component

of ALINK.

Name: Commons Configuration 1.6

License: Apache License

Website: http://commons.apache.org/proper/

commons-configuration/

Description: ”The Commons Configuration software library provides a

generic configuration interface which enables a Java applica-

tion to read configuration data from a variety of sources.”

Scope: Commons Configuration is used to maintain configuration

properties for running the ALINK toolbox. All configura-

tion properties used for data management, model construc-

tion, training and testing are accessed using this library.

73

Name: Commons Math 3.0

License: Apache License

Website: http://commons.apache.org/proper/commons-math/

Description: ”Commons Math is a library of lightweight, self-contained

mathematics and statistics components addressing the most

common problems not available in the Java programming lan-

guage or Commons Lang.”

Scope: The Commons Math library is used to perform statistical sam-

pling. Custom U-quadratic distribution was created to gen-

erate synthetic training examples to test the functionality of

PI implementation.

74

References

[1] Yaser S Abu-Mostafa. Hints. Neural Computation, 7(4):639–671, 1995.

[2] YS Abu-Mostafa. Learning from hints in neural networks. Journal of Complexity,

1990.

[3] Herman J Ader, Gideon J Mellenbergh, and David J Hand. Advising on Research

Methods: a consultant companion. Johannes van Kessel Publ., 2008.

[4] P Aebischer, AN Salessiotis, and SR Winn. Basic fibroblast growth factor re-

leased from synthetic guidance channels facilitates peripheral nerve regeneration

across long nerve gaps. Journal of neuroscience research, 23(3):282–289, 2004.

[5] AD Ansselin, T Fink, and DF Davey. Peripheral nerve regeneration through

nerve guides seeded with adult schwann cells. Neuropathology and applied neu-

robiology, 23(5):387–398, 1997.

[6] Ran Avnimelech and Nathan Intrator. Boosted mixture of experts: an ensemble

learning scheme. Neural computation, 11(2):483–497, 1999.

[7] Jeffrey E Barrick, Dong Su Yu, Sung Ho Yoon, Haeyoung Jeong, Tae Kwang

Oh, Dominique Schneider, Richard E Lenski, and Jihyun F Kim. Genome evo-

lution and adaptation in a long-term experiment with escherichia coli. Nature,

461(7268):1243–1247, 2009.

[8] William G Baxt and Halbert White. Bootstrapping confidence intervals for

clinical input variable effects in a network trained to identify the presence of

acute myocardial infarction. Neural Computation, 7(3):624–638, 1995.

75

[9] TB Bini, Shujun Gao, Shu Wang, Aymeric Lim, Lim Ben Hai, S Ramakrishna,

et al. Electrospun poly (l-lactide-co-glycolide) biodegradable polymer nanofibre

tubes for peripheral nerve regeneration. Nanotechnology, 15(11):1459, 2004.

[10] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August

1996.

[11] Leo Breiman. Out-of-bag estimation. Technical report, Citeseer, 1996.

[12] Lila J Chamberlain, Ioannis V Yannas, Hu-Ping Hsu, and Myron Spector. Con-

nective tissue response to tubular implants for peripheral nerve regeneration: the

role of myofibroblasts. The Journal of comparative neurology, 417(4):415–430,

2000.

[13] LJ Chamberlain, IV Yannas, HP Hsu, G Strichartz, and M Spector. Collagen-

gag substrate enhances the quality of nerve regeneration through collagen tubes

up to level of autograft. Experimental neurology, 154(2):315–329, 1998.

[14] Chun-Jung Chen, Yen-Chuan Ou, Su-Lan Liao, Wen-Ying Chen, Shih-Yun Chen,

Ching-Wen Wu, Chun-Chiang Wang, Wen-Yi Wang, Yong-San Huang, and Shan-

Hui Hsu. Transplantation of bone marrow stromal cells for peripheral nerve

repair. Experimental neurology, 204(1):443–453, 2007.

[15] Hou-Yu Chiang, Hsiung-Fei Chien, Hsin-Hsin Shen, Jean-Dean Yang, Yu-Hua

Chen, Jui-Hsiang Chen, and Sung-Tsang Hsieh. Reinnervation of muscular tar-

gets by nerve regeneration through guidance conduits. Journal of Neuropathology

& Experimental Neurology, 64(7):576–587, 2005.

76

[16] Pablo Cingolani and Jesus Alcala-Fdez. jfuzzylogic: a robust and flexible fuzzy-

logic inference system language implementation. In Fuzzy Systems (FUZZ-

IEEE), 2012 IEEE International Conference on, pages 1–8. IEEE, 2012.

[17] Matthew Conforth, Yan Meng, Chandra Valmikinathan, and Xiaojun Yu. Nerve

graft selection for peripheral nerve regeneration using neural networks trained by

a hybrid aco/pso method. In Computational Intelligence in Bioinformatics and

Computational Biology, 2009. CIBCB’09. IEEE Symposium on, pages 208–214.

IEEE, 2009.

[18] Ralph de Boer, Andrew M Knight, Andreas Borntraeger, Marie-Noëlle Hébert-

Blouin, Robert J Spinner, Martijn JA Malessy, Michael J Yaszemski, and An-

thony J Windebank. Rat sciatic nerve repair with a poly-lactic-co-glycolic acid

scaffold and nerve growth factor releasing microspheres. Microsurgery, 31(4):293–

302, 2011.

[19] Richard D De Veaux, Jennifer Schumi, Jason Schweinsberg, and Lyle H Ungar.

Prediction intervals for neural networks via nonlinear regression. Technometrics,

40(4):273–282, 1998.

[20] Wilfred FA Den Dunnen, Berend van der Lei, Jeff M Schakenraad, Engbert H

Blaauw, Ietse Stokroos, Albert J Pennings, and Peter H Robinson. Long-term

evaluation of nerve regeneration in a biodegradable nerve guide. Microsurgery,

14(8):508–515, 2005.

[21] Mahesh Chandra Dodla and Ravi V Bellamkonda. Differences between the effect

of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds

on nerve regeneration across long peripheral nerve gaps. Biomaterials, 29(1):33–

46, 2008.

77

[22] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimiza-

tion by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 26(1):29–41, 1996.

[23] Richard Dybowski and S Roberts. Confidence intervals and prediction inter-

vals for feed-forward neural networks. Clinical applications of artificial neural

networks, pages 298–326, 2001.

[24] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap, vol-

ume 57. Chapman & Hall/CRC, 1994.

[25] Gregory RD Evans, Keith Brandt, Andreas D Niederbichler, Priscilla Chauvin,

Sonja Hermann, Melissa Bogle, Lisa Otta, Bao Wang, and Charles W Patrick.

Clinical long-term in vivo evaluation of poly (l-lactic acid) porous conduits for

peripheral nerve regeneration. Journal of Biomaterials Science, Polymer Edition,

11(8):869–878, 2000.

[26] E.a. Garcia. Learning from Imbalanced Data. IEEE Transactions on Knowledge

and Data Engineering, 21(9):1263–1284, September 2009.

[27] Paul M George, Rajiv Saigal, Michael W Lawlor, Michael J Moore, David A

LaVan, Robert P Marini, Martin Selig, Melvin Makhni, Jason A Burdick, Robert

Langer, et al. Three-dimensional conductive constructs for nerve regeneration.

Journal of Biomedical Materials Research Part A, 91(2):519–527, 2009.

[28] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H Witten. The weka data mining software: an update. ACM

SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

78

[29] Sherif Hashem, Bruce Schmeiser, and Yuehwern Yih. Optimal linear combina-

tions of neural networks: an overview. In Neural Networks, 1994. IEEE World

Congress on Computational Intelligence., 1994 IEEE International Conference

on, volume 3, pages 1507–1512. IEEE, 1994.

[30] J. Heaton. Introduction to Neural Networks for Java (2nd Edition). Heaton

Research, 2008.

[31] Tom Heskes. Practical confidence and prediction intervals. Advances in neural

information processing systems, 1997.

[32] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. Decision combination

in multiple classifier systems. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 16(1):66–75, 1994.

[33] James P Hollowell, Aida Villadiego, and Keith M Rich. Sciatic nerve regeneration

across gaps within silicone chambers: long-term effects of ngf and consideration

of axonal branching. Experimental neurology, 110(1):45–51, 1990.

[34] Shan-hui Hsu, Chien-Hsiang Su, and Ing-Ming Chiu. A novel approach to align

adult neural stem cells on micropatterned conduits for peripheral nerve regener-

ation: a feasibility study. Artificial Organs, 33(1):26–35, 2009.

[35] JT Gene Hwang and A Adam Ding. Prediction intervals for artificial neural net-

works. Journal of the American Statistical Association, 92(438):748–757, 1997.

[36] Ryosuke Ikeguchi, Ryosuke Kakinoki, Taiichi Matsumoto, Tomoyuki Yamakawa,

Ken Nakayama, Yoshihide Morimoto, Hiroshi Tsuji, Junzo Ishikawa, and Takashi

Nakamura. Basic fibroblast growth factor promotes nerve regeneration in a c–

ion-implanted silicon chamber. Brain research, 1090(1):51–57, 2006.

79

[37] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.

Adaptive mixtures of local experts. Neural computation, 3(1):79–87, 1991.

[38] C-B Jenq and RE Coggeshall. Numbers of regenerating axons in parent and

tributary peripheral nerves in the rat. Brain research, 326(1):27–40, 1985.

[39] Chung-Bii Jenq and Richard E Coggeshall. Permeable tubes increase the length

of the gap that regenerating axons can span. Brain research, 408(1):239–242,

1987.

[40] Chung-Bii Jenq, Lee Lan Jenq, and Richard E Coggeshall. Nerve regeneration

changes with filters of different pore size. Experimental neurology, 97(3):662–671,

1987.

[41] Yaochu Jin and B Sendhoff. Knowledge incorporation into neural networks from

fuzzy rules. Neural Processing Letters, 10(3):231–242, 1999.

[42] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the

em algorithm. Neural computation, 6(2):181–214, 1994.

[43] N Kasabov. Evolving fuzzy neural networks for supervised/unsupervised online

knowledge-based learning. IEEE transactions on systems, man, and cybernetics.

Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics

Society, 31(6):902–18, January 2001.

[44] James Kennedy and Russell Eberhart. Particle swarm optimization. In Neu-

ral Networks, 1995. Proceedings., IEEE International Conference on, volume 4,

pages 1942–1948. IEEE, 1995.

[45] Abbas Khosravi, Saeid Nahavandi, Doug Creighton, and Amir F Atiya. Compre-

hensive review of neural network-based prediction intervals and new advances.

80

IEEE transactions on neural networks / a publication of the IEEE Neural Net-

works Council, 22(9):1341–56, September 2011.

[46] William Koch, Yan Meng, Munish Shah, Wei Chang, and Xiaojun Yu. Knowl-

edge assistance for uncertain neural networks predicting nerve guidance conduit

performance for peripheral nerve injury. In preparation.

[47] William Koch, Yan Meng, Munish Shah, Wei Chang, and Xiaojun Yu. Predict-

ing nerve guidance conduit performance for peripheral nerve regeneration using

bootstrap aggregated neural networks. In Neural Networks (IJCNN), The 2013

International Joint Conference on.

[48] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[49] Annie C Lee, Vivian M Yu, James B Lowe, Michael J Brenner, Daniel A

Hunter, Susan E Mackinnon, and Shelly E Sakiyama-Elbert. Controlled re-

lease of nerve growth factor enhances sciatic nerve regeneration. Experimental

neurology, 184(1):295–303, 2003.

[50] Wenbin Li and Mario Fritz. Recognizing materials from virtual examples. In

Computer Vision–ECCV 2012, pages 345–358. Springer, 2012.

[51] G Lundborg, L Dahlin, D Dohi, M Kanje, and N Terada. A new type of bioar-

tificial nerve graft for bridging extended defects in nerves. The Journal of Hand

Surgery: British & European Volume, 22(3):299–303, 1997.

[52] R Mart and A El-Fallahi. Multilayer neural networks: an experimental evaluation

of on-line training methods. Computers & Operations Research, 2004.

81

[53] D.A. Nix and A.S. Weigend. Estimating the mean and variance of the target

probability distribution. In Neural Networks, 1994. IEEE World Congress on

Computational Intelligence., 1994 IEEE International Conference on, volume 1,

pages 55–60 vol.1, 1994.

[54] P Niyogi, F Girosi, and T Poggio. Incorporating prior information in machine

learning by creating virtual examples. Proceedings of the IEEE, pages 1–36, 1998.

[55] Partha Niyogi, Federico Girosi, and Tomaso Poggio. Incorporating prior informa-

tion in machine learning by creating virtual examples. Proceedings of the IEEE,

86(11), 1998.

[56] GW Oehlert. A note on the delta method. The American Statistician, 46(1):27–

29, 1992.

[57] Katsumi Ohbayashi, Hiroshi K Inoue, Akira Awaya, Satoshi Kobayashi, Hideaki

Kohga, Masaru Nakamura, and Chihiro Ohye. Peripheral nerve regeneration

in a silicone tube: effect of collagen sponge prosthesis, laminin, and pyrimidine

compound administration. Neurologia medico-chirurgica, 36(7):428, 1996.

[58] Thomas Oommen, Debasmita Misra, Navin KC Twarakavi, Anupma Prakash,

Bhaskar Sahoo, and Sukumar Bandopadhyay. An objective analysis of sup-

port vector machine based classification for remote sensing. Mathematical Geo-

sciences, 40(4):409–424, 2008.

[59] Kevin M Passino and Stephen Yurkovich. Fuzzy control. Citeseer, 1998.

[60] Thomas Nordahl Petersen, Claus Lundegaard, Morten Nielsen, Henrik Bohr,

Jakob Bohr, Søren Brunak, Garry P Gippert, and Ole Lund. Prediction of

82

protein secondary structure at 80% accuracy. Proteins: Structure, Function,

and Bioinformatics, 41(1):17–20, 2000.

[61] DA Pomerleau. Efficient training of artificial neural networks for autonomous

navigation. Neural Computation, pages 1–10, 1991.

[62] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.

Technical report, DTIC Document, 1989.

[63] WC Priedhorsky and SS Holt. Long-term cycles in cosmic x-ray sources. Space

Science Reviews, 45(3-4):291–348, 1987.

[64] Brandon Rasmussen, J Wesley Hines, and Andrei V Gribok. An applied com-

parison of the prediction intervals of common empirical modeling strategies. In

Proc. Maintenance and Reliability Conference, Knoxville, TN. Citeseer, 2003.

[65] Paul E Rasmussen, Keith WT Goulding, James R Brown, Peter R Grace,

H Henry Janzen, and Martin Körschens. Long-term agroecosystem experiments:

assessing agricultural sustainability and global change. Science, 282(5390):893–

896, 1998.

[66] Joseph Sill and Yaser S Abu-Mostafa. Monotonicity hints. Advances in neural

information processing systems, pages 634–640, 1997.

[67] Mark Henry Spilker. Peripheral nerve regeneration through tubular devices: a

comparison of assays of device effectiveness. PhD thesis, Massachusetts Institute

of Technology, 2000.

[68] Steven C Suddarth and Alistair DC Holden. Symbolic-neural systems and the use

of hints for developing complex systems. International Journal of Man-Machine

Studies, 35(3):291–311, 1991.

83

[69] Robert Tibshirani. A comparison of some error estimates for neural network

models. Neural Computation, pages 1–15, 1996.

[70] Tamás Varga and Horst Bunke. Generation of synthetic training data for an

hmm-based handwriting recognition system. In Document Analysis and Recog-

nition, 2003. Proceedings. Seventh International Conference on, pages 618–622.

IEEE, 2003.

[71] Lawrence R Williams, Nils Danielsen, Harald Müller, and Silvio Varon. Exoge-

nous matrix precursors promote functional nerve regeneration across a 15-mm

gap within a silicone chamber in the rat. The Journal of comparative neurology,

264(2):284–290, 2004.

[72] RJ Williams and David Zipser. A learning algorithm for continually running

fully recurrent neural networks. Neural computation, pages 1–10, 1989.

[73] Matthew D Wood, Daniel Hunter, Susan E Mackinnon, and Shelly E Sakiyama-

Elbert. Heparin-binding-affinity-based delivery systems releasing nerve growth

factor enhance sciatic nerve regeneration. Journal of Biomaterials Science, Poly-

mer Edition, 21(6-7):771–787, 2010.

[74] Matthew D Wood, Amy M Moore, Daniel A Hunter, Sami Tuffaha, Gregory H

Borschel, Susan E Mackinnon, and Shelly E Sakiyama-Elbert. Affinity-based

release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic

nerve regeneration. Acta biomaterialia, 5(4):959–968, 2009.

[75] Xiaoyun Xu, Hanry Yu, Shujun Gao, Hai-Quan Mao, Kam W Leong, and Shu

Wang. Polyphosphoester microspheres for sustained release of biologically active

nerve growth factor. Biomaterials, 23(17):3765–3772, 2002.

84

[76] Ioannis V Yannas and Brook J Hill. Selection of biomaterials for peripheral

nerve regeneration using data from the nerve chamber model. Biomaterials,

25(9):1593–1600, 2004.

[77] Li Yao, Godard CW de Ruiter, Huan Wang, Andrew M Knight, Robert J Spin-

ner, Michael J Yaszemski, Anthony J Windebank, and Abhay Pandit. Controlling

dispersion of axonal regeneration using a multichannel collagen nerve conduit.

Biomaterials, 31(22):5789–5797, 2010.

[78] T Yu, Tony Jan, S Simoff, and John Debenham. Incorporating prior domain

knowledge into inductive machine learning. pages 1–42, 2007.

[79] Xiaojun Yu and Ravi V Bellamkonda. Tissue-engineered scaffolds are effective

alternatives to autografts for bridging peripheral nerve gaps. Tissue engineering,

9(3):421–430, 2003.

[80] Jie Zhang. Developing robust non-linear models through bootstrap aggregated

neural networks. Neurocomputing, 25(1-3):93–113, April 1999.

