
Neuroflight: Next Generation Flight Control
Firmware

William Koch, Renato Mancuso, Azer Bestavros
Boston University

Boston, MA 02215
{wfkoch, rmancuso, best}@bu.edu

Abstract—Little innovation has been made to low-level at-
titude flight control used by unmanned aerial vehicles, which
still predominantly uses the classical PID controller. In this
work we introduce Neuroflight, the first open source neuro-
flight controller firmware. We present our toolchain for training
a neural network in simulation and compiling it to run on
embedded hardware. Challenges faced jumping from simulation
to reality are discussed along with our solutions. Our evaluation
shows the neural network can execute at over 2.67kHz on
an Arm Cortex-M7 processor and flight tests demonstrate a
quadcopter running Neuroflight can achieve stable flight and
execute aerobatic maneuvers.

I. INTRODUCTION

Recently there has been explosive growth in user-level
applications developed for unmanned aerial vehicles (UAVs).
However little innovation has been made to the UAV’s low-
level attitude flight controller which still predominantly uses
the classical PID controller. Although PID control has proven
to be sufficient for a variety of applications, it falls short
in dynamic flight conditions and environments (e.g. in the
presence of wind, payload changes and voltage sag). In these
cases, more sophisticated control strategies are necessary, that
are able to adapt and learn. The use of neural networks (NNs)
for flight control (i.e. neuro-flight control) has been actively
researched for decades to overcome limitations in other control
algorithms such as PID control. However the vast majority of
research has focused on developing autonomous neuro-flight
controller autopilots capable of tracking trajectories [1], [2],
[3], [4], [5], [6], [7], [8]. An autopilot consists of an outer
loop and an inner loop. The outer loop is responsible for
generating attitude1 and thrust command inputs to follow a spe-
cific trajectory. The inner loop is responsible for maintaining
stable flight and for reaching the attitude set points over time
through direct manipulation of the aircraft’s actuators. Unlike
the outer loop, the inner attitude control loop is mandatory
for flight and can be used exclusively for manually piloting
a UAV. Previous work does not address situations in which
the neuro-flight controller autopilot can be overridden, which
is essential to be used in practice. In this work we explore
the adoption of neuro-flight control as an alternative to PID
for inner loop flight control (i.e. attitude control). However in
order to fully understand the performance implications of using
NNs for flight control it is critical to study attitude control
independently from trajectory planning.

1Defined as the orientation of the aircraft in terms of its angular velocity
for each roll, pitch, and yaw axis.

In the spring of 2018 we released an OpenAI gym environ-
ment [9] called GYMFC-V1 [10]. Via GYMFC-V1 it is possi-
ble to train NNs attitude control of a quadcopter in simulation
using reinforcement learning (RL). Neuro-flight controllers
trained with Proximal Policy Optimization (PPO) [11] were
shown to exceed the performance of a PID controller. Nonethe-
less the attitude neuro-flight controllers were not validated in
the real world, thus it remains unknown if the trained networks
are capable of flight.

In this work we make the following contributions. (1)
We introduce Neuroflight, the first open source neuro-flight
controller firmware for multi-rotors and fixed wing aircraft.
The NN embedded in Neuroflight replaces attitude control and
motor mixing commonly found in traditional flight control
firmwares (Section III). (2) To train neuro-flight controllers
capable of stable flight in the real world we released GYMFC-
V2, an update addressing several challenges in making the tran-
sition from simulation to reality (Section IV). (3) We propose a
toolchain for compiling a trained NN to run on embedded hard-
ware. To our knowledge this is the first work that consolidates a
neuro-flight attitude controller on a microcontroller, rather than
a multi-purpose onboard computer, thus allowing deployment
on lightweight micro-UAVs (Section V). (4) Lastly, we provide
an evaluation showing the NN can execute at over 2.67kHz
on an Arm Cortex-M7 processor and flight tests demonstrate
that a quadcopter running Neuroflight can achieve stable flight
and execute aerobatic maneuvers such as rolls, flips, and the
Split-S (Section VI). Source code for the project can be found
at https://github.com/wil3/neuroflight and videos of our test
flights can be viewed at https://www.youtube.com/playlist?
list=PLqSAhwMPhV6tJJ1yCUIh0GcIVEOfyBD S.

The goal of this work is to provide the community with a
stable platform to innovate and advance development of neuro-
flight control design for UAVs, and to take a step towards
making neuro-flight controllers mainstream. In the future we
hope to establish NN powered attitude control as a convenient
alternative to classic PID control for UAVs operating in harsh
environments or that require particularly competitive set point
tracking performance (e.g. drone racing).

II. BACKGROUND AND RELATED WORK

Since the dawn of fly-by-wire, flight control algorithms
have continued to advance to meet increasing performance
demands [12], [13], [14]. In recent years a significant amount
of research has investigated the use of NNs for flight control
which has advantages over classical control methods thanks to
their ability to learn and plan.

https://github.com/wil3/neuroflight
https://www.youtube.com/playlist?list=PLqSAhwMPhV6tJJ1yCUIh0GcIVEOfyBD_S
https://www.youtube.com/playlist?list=PLqSAhwMPhV6tJJ1yCUIh0GcIVEOfyBD_S


Various efforts have demonstrated stable flight of a quad-
copter through mathematical models using neuro-flight con-
trollers to track trajectories. Online learning methods [2], [3]
can learn quadcopter dynamics in real-time. Yet this requires
an initial learning period and flight performance behavior can
be unpredictable for rare occurring events. Offline supervised
learning [1] can construct pre-trained neuro-flight controllers
capable of immediate flight. However realistic data can be
expensive to obtain and inaccuracies from the true aircraft can
result in suboptimal control policies. RL is an alternative to su-
pervised learning for offline learning. It is ideal for sequential
tasks in continuous environments, such as control and thus
an attractive option for training neuro-flight controllers. RL
consists of an agent (i.e. NN) interacting with an environment
to learn a task. At discrete time steps the agent performs an
action (e.g. writes control signals to aircraft actuators) in the
environment. In return the agent receives the current state of
the environment (obtained from various aircraft sensors which
typically becomes the input to the NN) and a numerical reward
representing the action’s performance. The agent’s objective is
to maximize its rewards.

Over time there has been a number of successes transfer-
ring controllers trained with RL to a UAVs onboard computer
to autonomously track trajectories in the real world. Flight
has been achieved for both helicopters [4], [5], [6] and quad-
copters [7], [8]. Unfortunately none of these works have pub-
lished any code thereby making it difficult to reproduce results
and to build on top their research. Furthermore evaluations are
only in respect to the accuracy of position therefore it is still
unknown how well attitude is controlled.

In previous work [10] we proposed an RL environment,
GYMFC-V1, for developing attitude neuro-flight controllers
which exceed accuracy of a PID controller in regards to
angular velocity error. The GYMFC-V1 environment uses the
Gazebo simulator [15], a high fidelity physics simulator, which
contains a digital replica, or digital twin, of the aircraft, fixed
about its center of mass to the simulation world one meter
above the ground allowing the aircraft to freely rotate in any
direction. The angular velocity Ω(t) = [Ωφ(t),Ωθ(t),Ωψ(t)]
for each roll, pitch, and yaw axis of the aircraft is controlled by
writing pulse width modulation (PWM) values to the aircraft
actuators. The agent is trained using episodic tasks (i.e. a task
that has a terminal state). At the beginning of an episodic
task a desired angular velocity Ω∗(t) is randomly sampled.
The goal of the agent is to achieve this velocity in a finite
amount of time starting from still. At each time step an action
a(t) = [a0(t), . . . , aN−1(t)] is provided by the agent where N
is the number of aircraft actuators to be controlled (e.g. N = 4
for a quadcopter) and ai(t) ∈ [1000, 2000] represents the
PWM value. The agent is returned the state x(t) = (e(t), ω(t))
where e(t) = Ω∗(t) − Ω(t) is the angular velocity error
and ω(t) = [ω0(t), . . . , ωN−1(t)] is the angular velocity of
each actuator (e.g. for a quadcopter the RPM of the motor).
Additionally a negative reward r is returned representing the
angular velocity error. However evaluations were preformed
in simulation thus it was unknown if neuro-flight controllers
trained by GYMFC-V1 could control a quadcopter in the real
world.

In this work we pick up where GYMFC-V1 left off. We
explain in Section IV how without several modifications a NN

trained with GYMFC-V1 will not be able to achieve stable
flight. With these modifications addressed in GYMFC-V2 we
were able to generate attitude neuro-flight controllers capable
of high precision flight in the real world.

III. NEUROFLIGHT OVERVIEW

Neuroflight is a fork of Betaflight version 3.3.3 [16], a high
performance flight controller firmware used extensively in first-
person-view (FPV) multicopter racing. Internally Betaflight
uses a two-degree-of-freedom PID controller (not to be con-
fused with rotational degrees-of-freedom) for attitude control
and includes other enhancements such as gain scheduling for
increased stability when battery voltage is low and throttle is
high. Betaflight runs on a wide variety of flight controller hard-
ware based on the Arm Cortex-M family of microcontrollers.
Flight control tasks are scheduled using a non-preemptive
cooperative scheduler. The main PID controller task consists
of multiple subtasks, including: (1) reading the remote control
(RC) command for the desired angular velocity, (2) reading
and filtering the angular velocity from the onboard gyroscope
sensor, (3) evaluating the PID controller, (4) applying motor
mixing to the PID output to account for asymmetries in the
motor locations (see [10] for further details on mixing), and
(5) writing the motor control signals to the electronic speed
controller (ESC).

Neuroflight replaces Betaflight’s PID controller task with
a neuro-flight controller task. This task uses a single NN
for attitude control and motor mixing. The architecture of
Neuroflight decouples the NN from the rest of the firmware
allowing the NN to be trained and compiled independently. The
compiled NN is then later linked into Neuroflight to produce
a firmware image for the target flight controller hardware.

To Neuroflight, the NN appears to be a generic function
y(t) = f(x(t)). The input x(t) = [e(t),∆e(t)] where ∆e(t) =
e(t) − e(t − 1). The output y(t) = [y0, . . . , yN−1] where N
is the number of aircraft actuators to be controlled and yi ∈
[0, 1] is the control signal representing the percent power to
be applied to the i− th actuator. This output representation is
protocol agnostic and is not compatible with NNs trained with
GYMFC-V1 whose output is the PWM to be applied to the
actuator. PWM is seldomly used in high performance flight
control firmware and has been replaced by digital protocols
such as DShot for improved accuracy and speed [16].

At time t, the NN inputs are resolved; Ω∗(t) is read
from the RX serial port which is either connected to a radio
receiver in the case of manual flight or an onboard companion
computer operating as an autopilot in the case of autonomous
flight, and Ω(t) is read from the gyroscope sensor. The NN
is then evaluated to obtain the control signal outputs y(t).
However the NN has no concept of thrust (T), therefore
to achieve translational movement the thrust command must
be mixed into the NN output to produce the final control
signal output to the ESC, u(t). The logic of throttle mixing
is to uniformly apply additional power across all actuators
proportional to the available range in the NN output, while
giving priority to achieving Ω∗(t). If any output value is
over saturated (i.e. ∃yi(t) : yi(t) ≥ 1) no additional throttle
will be added. The input throttle value is scaled depending
on the available output range to obtain the actual throttle



value T̂(t) = T(t) (1−maxi{yi(t)}) where the function max
returns the max value from the NN output. The readjusted
throttle value is then proportionally added to each NN output
to form the final control signal output ui(t) = T̂(t) + yi(t).

IV. GYMFC-V2

In this section we discuss the enhancements made to
GYMFC-V2. These changes primarily consist of a new state
representation and reward system. GYMFC-V2 reinforces sta-
ble flight behavior through our reward system defined as
r = re + ry + r∆. The agent is penalized for its angular
velocity error, similar to GYMFC-V1, along each axis with
re = −(e2

φ + e2
θ + e2

ψ). However we have identified the
remaining two variables in the reward system as critical for
transferability to the real world and achieving stable flight.
Both rewards are a function of the agents control output. First
ry rewards the agent for minimizing the control output, and
next, r∆ rewards the agent for minimizing oscillations.

Motor Velocity to Delta Angular Velocity Error
GYMFC-V1 returns the state (e(t), ω(t)) to the agent at
each time step. However not all UAVs have the sensors to
measure motor velocity ω(t) as this typically involves digital
ESC protocols. Even an aircraft with compatible hardware,
the inclusion of the motor velocity as an input to the NN
introduces additional challenges as it forces the development
of an accurate propulsion system model for the digital twin.
A mismatch between the physical propulsion system (i.e.
motor/propeller combination) and the digital twin will result in
the inability to achieve stable flight. Developing an accurate
motor models is time-consuming and expensive. Specialized
equipment is required to measure power consumption, torque,
and thrust. To address these issues we investigated alternative
environment states that did not rely on the motor model.
Through experimentation we found that we could reduce the
entire state to just angular velocity errors, by replacing ω(t)
with the error differences ∆e(t). To identify the performance
impact we trained a NN in an environment with ω(t) and
compared this to a NN trained in an environment with ∆e(t).
Both NNs were trained with PPO using hyperparameters
from [10] for 10 million steps. After training, each NN was
validated against 10 never before seen random target angular
velocities. Results show the NN trained in an environment with
x(t) = (e(t),∆e(t)) experienced on average 45.07% less error
with only an increase of 3.41% in its control signal outputs.
Furthermore we found using a history of error as input was
also satisfactory however we opted to use the former as it did
not require a variable size state to be maintained.

By modifying the environment state we discovered we also
needed to modify the RL task. Training using episodic tasks, in
which the aircraft is at rest and must reach an angular velocity
never exposes the agent to scenarios in which the quadcopter
must return to still from some random angular velocity. With
the new state input consisting of the previous state, this is
a significant difference from GYMFC-V1 which only uses
the current state. A continuous task is constructed to mimic
real flight, continually issuing commands2. This task randomly
samples a command and sets the target angular velocity to this

2Technically this is still considered an episodic task since the simulation
time is finite. However in the real world flight time is typically finite as well.

command for a random amount of time. This command is then
followed by an idle (i.e. Ω∗ = [0, 0, 0]) command to return the
aircraft to still for a random amount of time. This is repeated
until a max simulation time is reached.

Minimizing Output Oscillations In the real world high
frequency oscillations in the control output can damage motors.
Rapid switching of the control output causes the ESC to rapidly
change the angular velocity of the motor drawing excessive
current into the motor windings. The increase in current causes
high temperatures which can lead to the insulation of the motor
wires to fail. Once the motor wires are exposed they will
produce a short and “burn out” the motor.

The reward system used by GYMFC-V1 is strictly a
function of the angular velocity error. This is inadequate in
developing neuro-flight controllers that can be used in the
real world. Essentially this produces controllers that closely
resemble the behavior of an over-tuned PID controller. The
controller is stuck in a state in which it is always correcting
itself, leading to output oscillation.

In order to construct networks that produce smooth control
signal outputs, the control signal output must be introduced
into the reward system. This turned out to be quite chal-
lenging. Ultimately we were able to construct NNs outputting
stable control outputs with the inclusion of the reward r∆ =
β
∑N−1
i=0 max{0,∆ymax − (∆yi)

2} which is only applied if
the absolute angular velocity error for every axis is less than
some threshold (i.e. the error band). This allows the agent
to be signaled by re to reach the target without the influence
from this reward. Maximizing r∆ will drive the agent’s change
in output to zero when in the error band. To derive r∆, the
change in the control output yi from the previous simulation
step is squared to magnify the effect. This is then subtracted
from a constant ∆ymax defining an upper bound for the change
in the control output. The max function then forces a positive
reward, therefore if (∆yi)

2 exceeds the limit no reward will be
given. The rewards for each control output N −1 are summed
and then scaled by a constant β, where β > 0. Using the
same training and validation procedure previously discussed,
we found a NN trained in GYMFC-V2 compared to GYMFC-
V1 resulted in a 87.95% decrease in ∆y.

Minimizing Control Signal Output Values Recall from
Section II, that the GYMFC-V1 environment fixes the aircraft
to the simulation world about its center of mass, allowing it
to only perform rotational movements. Due to this constrain
the agent can achieve Ω∗ with a number of different control
signal outputs (e.g. when Ω∗ = [0, 0, 0] this can be achieved
as long as y0 ≡ y1 ≡ y2 ≡ y3). However this poses a
significant problem when transferred to the real world as an
aircraft is not fixed about its center of mass. Any additional
power to the motors will result in an unexpected change in
translational movement. This is immediately evident when
arming the quadcopter which should remain idle until RC
commands are received. At idle, the power output (typically
4% of the throttle value) must not result in any translational
movement. Another byproduct of inefficient control signals
is a decreased throttle range (Section III). Therefore it is
desirable to have the NN control signals minimized while still
maintaining the desired angular velocity. In order to teach the
agent to minimize control outputs we introduce the reward
function ry = α (1− ȳ) providing the agent a positive reward
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Fig. 1: Overview of the Neuroflight toolchain. Our main
contributions are in the gray boxes while boxes with dashed
borders indicate minor modifications to existing software.

as the output decreases. Since yi ≤ 1 we first compute the
average output ȳ. Next 1− ȳ is calculated as a positive reward
for low output usage which is scaled by a constant α, where
α > 0. NNs trained using this reward experience on average
a 90.56% decrease in their control signal output.

V. TOOLCHAIN

In this section we introduce our toolchain for building the
Neuroflight firmware. Neuroflight is based on the philosophy
that each flight control firmware should be personalized for
the target aircraft to achieve maximum performance. To train
a NN optimal attitude control of an aircraft, a digital represen-
tation (i.e. a digital twin) of the aircraft must be constructed to
be used in simulation. This work begins to address how digital
twin fidelity affects flight performance, however it is still an
open question we will address in future work. The toolchain
displayed in Fig. 1 consists of three stages and takes as input a
digital twin and outputs a Neuroflight firmware unique to the
digital twin. In the remainder of this section we will discuss
each stage in detail.

Training The training stage takes as input a digital twin
of an aircraft and outputs a NN trained attitude control of the
digital twin capable of achieving stable flight in the real world.
Our toolchain can support any RL library that interfaces with
OpenAI environment APIs and allows for the NN state to be
saved as a Tensorflow graph. Currently our toolchain uses RL
algorithms provided by OpenAI baselines [17] which has been
modified to save the NN state. In Tensorflow, the saved state
of a NN is known as a checkpoint and consists of three files
describing the structure and values in the graph. Once training
has completed, the checkpoint is provides as input to Stage 2:
Optimization.

Optimization The optimization stage is an intermediate
stage between training and compilation that prepares the NN
graph to be run on hardware. The optimization stage (and
compilation stage) require a number of Tensorflow tools which
can all be found in the Tensorflow repository [18]. The
first step in the optimization stage is to freeze the graph.
Freezing the graph accomplishes two tasks: (1) condenses the
three checkpoint files into a single Protobuf file by replacing

variables with their equivalent constant values (e.g. numerical
weight values) and (2) extracts the subgraph containing the
trained NN by trimming unused nodes and operations that were
only used during training. Freezing is done with Tensorflow’s
freeze_graph.py tool which takes as input the checkpoint
and the output node of the graph so the tool can identify and
extract the subgraph.

Unfortunately the Tensorflow input and output nodes are
not documented by RL libraries (OpenAI baselines [17], Stable
baselines [19], TensorForce [20]) and in most cases it is
not trivial to identify them. We reverse engineered the graph
produced by OpenAI baselines (specifically the PPO1 imple-
mentation) using a combination of tools and cross referencing
with the source code. A Tensorflow graph can be visually
inspected using Tensorflow’s Tensorboard tool. OpenAI base-
lines does not support Tensorboard thus we created a script
to convert a checkpoint to a Probobuf file and then used
Tensorflow’s import_pb_to_tensorboard.py tool to
view the graph in Tensorboard. Additionally we used Tensor-
flow’s summarize_graph tool to summarize the inputs and
outputs of the graph. Ultimately we identified the input node
to be “pi/ob”, and the output to be “pi/pol/final/BiasAdd”.

Once the graph is freezed, it is optimized to run on hard-
ware by running the Tensorflow transform_graph tool.
Optimization provided by this tool allows graphs to execute
faster and reduce its overall footprint by further removing
unnecessary nodes. The optimized frozen ProtoBuf file is
provided as input to Stage 3: Compilation.

Compilation A significant challenge was developing a
method to integrate a trained NN into Neuroflight to be able to
run on the limited resources provided by a microcontroller. The
most powerful of the microcontrollers supported by Betaflight
consists of 1MB of flash memory and a Cortex-M7 processor
with a clock speed of 216MHz [21]. Recently there has
been an increase in interest for running NNs on embedded
devices but few solutions have been proposed. We found
Tensorflow’s tool tfcompile to work best for our toolchain.
tfcompile provides ahead-of-time (AOT) compilation of
Tensorflow graphs into executable code primarily motivated
as a method to execute graphs on mobile devices. Normally
executing graphs requires the Tensorflow runtime which is
far too heavy for a microcontroller. Compiling graphs using
tfcompile does not use the Tensoflow runtime which results
in a self contained executable and a reduced footprint.

Tensorflow uses the Bazel [22] build system and expects
you will be using the tfcompile Bazel macro in your
project. Neuroflight on the other hand is using make with
the GNU Arm Embedded Toolchain. Thus it was neces-
sary for us to integrate tfcompile into the toolchain by
calling the tfcompile binary directly. When invoked, an
object file representing the compiled graph and an accom-
panying header file is produced. Examining the header file
we identified three additional Tensorflow dependencies that
must be included in Neuroflight (typically this is automat-
ically included if using the Bazel build system): the AOT
runtime (runtime.o), an interface to run the compiled
functions (xla_compiled_cpu_function.o), and run-
ning options (executable_run_options.o) for a total
of 24.86 kB. In Section VI we will analyze the size of the
generated object file for the specific neuro-flight controller.



Iris NF1
Weight 1282g 432g
Wheelbase 550mm 212mm
Propeller 1047x2 5152x3
Motor 2830 850Kv 2204 2522Kv

Battery 3-cell 3.5Ah LiPo 4-cell 1.5Ah LiPo
Flight Controller F4 F7

TABLE I: Comparison between Iris and NF1 specifications.

To perform fast floating point calculations Neuroflight must
be compiled with Arm’s hard-float application binary inter-
face (ABI). Betaflight core, inherited by Neuroflight already
defines the proper compilation flags in the Makefile however
it is required that the entire firmware must be compiled with
the same ABI meaning the Tensorflow graph must also be
compiled with the same ABI. Yet tfcompile does not
currently allow for setting arbitrary compilation flags which
required us to modify the code. Under the hood, tfcompile
uses LLVM for code generation. We were able to enable
hard floating points through the ABIType attribute in the
llvm::TargetOptions class.

VI. EVALUATION

In this section we evaluate Neuroflight controlling a high
performance FPV racing quadcopter called NF1 and show it is
capable not only of stable flight but also the ability to execute
advanced aerobatic maneuvers. Images of NF1 and its entire
build log have been published to RotorBuilds [23].

Firmware Construction We used the Iris quadcopter
model included with the Gazebo simulator with modifications
to the motor model for our digital twin. The digital twin motor
model used by Gazebo is quite simple. Each control signal is
multiplied by a maximum rotor velocity constant to derive the
target rotor velocity while each rotor is associated with a PID
controller to achieve this target rotor velocity. We obtained an
estimated maximum 3,500 RPMs for our propulsion system
from Miniquad Test Bench [24] to update the maximum rotor
velocity constant. We also modified the rotor PID controller
(P=0.01, I=1.0) to achieve a similar throttle ramp.

NF1 is in stark contrast with the Iris quadcopter model
used by GYMFC-V1 which is advertised for autonomous flight
and imaging [25]. We have provided a visual comparison in
Fig. 2 and a comparison between the aircraft specifications in
Table I. In this table, weight includes the battery, while the
wheelbase is the motor to motor diagonal distance. Propeller
specifications are in the format “LLPPxB” where LL is the
propeller length in inches, PP is the pitch in inches and B
is the number of blades. Brushless motor sizes are in the
format “WWHH” where WW and HH is the stator width and
height respectively. The motors Kv value is the motor velocity
constant and is defined as the inverse of the motors back-EMF
constant which roughly indicates the RPMs per volt on an
unloaded motor [26]. Flight controllers are classified by the
version of the embedded Arm Cortex-M processor prefixed by
the letter ‘F’ (e.g. F4 flight controller uses a Cortex-M4).

Our NN architecture consisted of 2 hidden layers with
32 nodes each using hyperbolic tangent activation functions.
We trained the NN with the OpenAI Baseline version 0.1.4
implementation of PPO1 due to its previous success [10].
The reward system hyperparameters used were α = 300,

(a) Iris (b) NF1

Fig. 2: Iris simulated quadcopter compared to the NF1 real
quadcopter

β = 0.5, and ∆ymax = 1002. We used the following PPO
hyperparameters found by random search: a horizon of 500,
an Adam stepsize set to 1e-4 linearly decayed through training,
5 epochs with minibatch sizes of 32, 0.99 discount and a
Generalized Advantage Estimation (GAE) parameter of 0.95.
The optimization stage reduced the frozen Tensorflow graph
by 16% to a size of 12kB. The graph was compiled with Ten-
sorflow version 1.8.0-rc1 and the firmware was compiled for
the MATEKF722 target corresponding to the manufacturer and
model of our flight controller MATEKSYS Flight Controller
F722-STD. The final size of the firmware image is 913kB.

Timing Analysis Running a flight control task with a
fast control rate reduces write latency to the ESC resulting
in higher precision flight. However the latency of the ESC
protocol places a limit on the control rate. Thus it is critical
to analyze the execution time of the neuro-flight control task
so the optimal control rate of the task can be determined. It
is also important to identify which ESC protocol will provide
the best performance. We collect timing data for Neuroflight
and compare this to Betaflight for when the quadcopter is
disarmed and also armed under load. We instrumented the
firmware to calculate the timing measurement and wrote the
results to an unused serial port on the flight control board.
Connecting to the serial port on the flight control board via an
FTDI adapter we are able to log the data on an external PC.
We recorded 5,000 measurements and report the mean with a
95% confidence interval in Table II. Results show the neuro-
flight control task’s average execution time to be 281 ± 1.02
µs which allows the NN subtask to execute at 2.67kHz with
8kHz gyro updates which is far faster than what is required to
achieve stable flight (for comparison, commercial quadcopters
using the PWM ESC protocol have a max rate of 500Hz).
Although the NN can execute faster, the NN subtask frequency
is a division of the gyro update (in this case with denominator
of three). This control rate is more than four times faster
than the PWM ESC protocol (500Hz) therefore we configure
Neuroflight to use the ESC protocol DShot600 which has a
max frequency of 37.5kHz [27]. Given the simplicity of the
PID algorithm it came as no surprise that it is significantly
faster than the NN. However increasing the control rate too
much can introduce additional noise [27]. As microcontrollers
continue to increase in speed we will be able to keep increasing
neuro-flight controller control rates to be on par with PID
control.



Control Algorithm Flight Control Task
Disarmed Armed Disarmed Armed

Neuroflight 197 ± 0.03 200 ± 0.08 235 ± 0.08 281 ± 1.02
Betaflight 10 ± 0.02 11 ± 0.02 52 ± 0.06 97 ± 1.02

TABLE II: Timing analysis of the control algorithm and flight
control task. All values are in microseconds.

Flight Evaluation To test the performance of Neuroflight
we had an experienced drone racing pilot conduct test flights
for us. Neuroflight supports real-time logging during flight
allowing us to collect gyro and RC command data to an-
alyze how well the neuro-flight controller is able to track
the desired angular velocity. We asked the pilot to fly a
mix of basic maneuvers such as loops and figure eights and
advanced maneuvers such as rolls, flips, dives and the Split-
S. To execute a Split-S the pilot inverts the quadcopter and
descends in a half loop dive, exiting the loop so they are
flying in the opposite horizontal direction. Once we collected
the flight logs we played the desired angular rates back
to the NN in the GYMFC-V2 environment to evaluate the
performance in simulation. Comparison between the simulated
and real world performance is illustrated in Fig. 3 while
specific maneuvers that occur during this test flight are an-
notated. Flight in the real world had an average absolute error
¯|e|real = [15.17, 21.05, 11.26] for the roll, pitch and yaw axis

in degrees/s respectively while the GYMFC-V2 simulation had
an average absolute error ¯|e|sim = [2.88, 1.52, 4.07].

The increase in error is expected because the digital twin
does not perfectly model the real system. The increased error
on the pitch axis appears to be due to the differences in frame
shape between the digital twin and real quadcopter, which
are both asymmetrical but in relation to different axis. This
discrepancy may have resulted in pitch control lagging in the
real world as more torque and power is required to pitch in
our real quadcopter. A more accurate digital twin model can
boost accuracy. Furthermore, during this particular flight wind
gusts exceeded 30mph, while in the simulation world there are
no external disturbances acting upon the aircraft. In the future
we plan to deploy an array of sensors to measure wind speed
so we can correlate wind gusts with excessive error. As shown
in the video, stable flight can be maintained demonstrating the
transferability of a NN trained with our approach.

VII. FUTURE WORK AND CONCLUSION

In this work we introduced Neuroflight, the first open-
source neuro-flight control firmware for remote piloting multi-
copters and fixed wing aircraft and its accompanying toolchain.
There are three main directions we plan to pursue in future
work: digital twin development, adaptive and predictive con-
trol, and continuous learning. The economic costs associated
with developing neuro-flight control will foreshadow its fu-
ture, whether it could be mainstream or for special purpose
applications. In future work we will continue to investigate
how the fidelity of a digital twin affects flight performance in
an effort to reduce costs during development. With a stable
platform in place we can now begin to harness the NN’s true
potential. We will enhance the digital twin to aid in adaptive
control to account for excessive sensor noise, voltage sag,
change in flight dynamics due to high throttle input, payload
changes, external disturbances such as wind, and propulsion
system failure. Our current approach trains NNs exclusively

using offline learning. However to reduce the performance
gap between the simulated and real world it is more likely
a hybrid architecture will be necessary to provide continuous
learning. Given the payload restrictions of micro-UAVs and
weight associated with hardware necessary for online learning
we will investigate methods to off-load learning to the cloud.
We believe Neuroflight is a major milestone in neuro-flight
control and will provide a foundation for next generation flight
control firmwares.
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